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SUMMARY

This paper contains progress reports of NASA-sponsored
studies in the areas of space flight and guidance theory.
..... -_........... _ _,-,_ _ _,_l i_Y_iversities and

industrial companies. This progress report covers _b__

period from December 20, 1962. to July 15, 1963. The

technical supervisor of the contracts is W. E. Miner,

Deputy Chief of the Future Projects Branch, Aeroballistics

Division, George C. Marshall Space Flight Center.

INTRODUCTION

This report contains thirteen papers, the subject
matte_ of which lies in the areas of guidance and space

flight theory. These papers were written by investigators

employed at agencies under contract to MSFC.

t_.e fourth of the "Progress Reports"This report is
and covers the period from December 20_ 1962 to July I$,

1963 This progress report will ner_mnafter be referred to

as "the report." Information given in Progress Reports I,

2, and 3 will not be repeated here.

The agencies contributing and their fields of major
interest are:
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Field of Interest Agency

_alculus of Variations

Grumman Aircraft Engineering Corp.
Republic Aviation Corporation
Auburn University
Aeronutronics (Ford)
Analytical Mechanics Associates, Inc.

Impulse Orbit Transfer North American Aviation, Inc.

_elestial Mechanics Republic Aviation Corporation
University of Kentucky

Large Computer Exploitation Haynes International Corporation
University of North Carolina

The objective of this introduction is to review and
summarize the contribution of each agency.

The first paper, written by Hans K. Hinz of Grumman
Aircraft, extends the work reported on in Progress Report No. 2.
Primarily, it presents the results of earth-to-moon trajectory
computations (done by direct methods of calculus of variations)
_or the years 1965 to 1973.

The second paper, written by H. Gardner Moyer of Grumman
Aircraft Engineering Corporation, presents two methods of
treating a class of discontinuities in state and control
variables. The first method, called the wavelet-wavefront
method, adds to the classical results in allowing a jump
discontinuity in a state variable at a known value. The
statement is made that this method can be gradually extended
until the multistage rocket problem is included, but this is
not done. Instead, the second method based on the work of
Cicala is extended to care for certain special problems of
multistage rockets.

The third paper, written by George N. Nomicos of
Republic Aviation Corporation, extends the work reported on
in Progress Report No. 3 by Jack Richman of the same company.
A differential correction scheme, developed for improving the

"initial values of the adjoint variables (direction numbers
and their derivations of the thrust vector), is extended to
include the discontinuities in thrust and variations in cutoff
time. It is recommended that the parameters of conics be used
for calculating purposes, The use of these parameters has
the effect of changing the variable end-condition problem into
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a fixed end-point problem for many applications, but is

limited in that transformations would be required to develop
the desired information for hardware use.

The fourth paper, written by Douglas Raney at Auburn

University, develops a computational procedure for obtaining

extremal reentry trajectories. The vehicle considered has

an offset center of gravity. The forces acting on the

vehicle are lift, drag, gravity, and roll control jets. The

integral over time of the square of the total aerodynamic

force is minimized, and the magnitude of the roll control
force is used as the control variable. The classical calculus

of variation approach is used to establish computational pro-

cedures for reentry trajectories.

The fifth paper, by Richard R. Auelmann of Aeronutronic

(Ford), should not of its own right be classified under
calculus of variations. However, the purpose of the paper

was to establish a method of computing trajectories with

the force normal to the velocity vector. A solution of this

problem hopefully would give a basis fo_. a perturbation

theory in computing low thrust trajectories. The problem
was solved to the point of reducing the solution to that of

quadrature. The resulting integrals appear to have little
chance of solution; therefore, this procedure offers little

as a basis for a perturbation theory. A solution of either

the circumferential or tangential force direction problems

appears to offer a better base when combined with the radial
solution. The result is interesting but of small engineering

value.

The sixth paper, written by Gary A. McCue of North

American Aviation, Inc., presents a method of developing an

"impulse function space," a four dimensional space (_i -

the angle from the line of nodes of the initial orbit and
the final desired orbit to the line of nodes of the initial

orbit and the transfer orbit measured in the plane i where

i=l is the initial orbit plane, and i=2 is the final orbit

plane; p is the semi-latus rectum of the transfer orbit;
and _v is the total cost in velocity of the orbit transfer).

Contour lines of equal velocity are presented on a ¢i vs ¢2

graph with p used as a parameter. The "impulse function

space" presented in the graphical form described above gives
a method for visual inspection to determine optimum two-

impulse orbit transfer and to determine the sensitivity of

the parameters (¢I_¢2, P) in the neighborhood of such optima.

Notice that the cost of presenting graphically such a picture

for study is less than one minute of IBM 7090 time.
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The seventh paper, written by Gentry Lee_ also of North

American Aviation, Inc., presents an eighth order polynomial

expression. The real roots of this polynomial may refer to
extrema in the "impulse function space." Two test f_nctions

are developed that define regions in which all extrema must

lie. These regions identify those roots that correspond to
extrema in the impulse function and those that are extraneous.
The analysis shows that there are cases in which transfers

between elliptical orbits contain hyperbolic Zrajectories for
a minimum transfer.

These seven papers are in some manner related to optimizing
trajectories. The next two papers concern special solutions or

approximations of solutions in the field of celestial mechanics.

The first (eighth paper) of these papers, written by
Mary Payne of Republic Aviation Corp., follows work done on

the restricted three body problem reported on in Progress

Reports no. 2 and 3. This paper introduces four new parameters

into the Hamiltonian. The non-in_egrab!e terms in the pertur-
bation equations are minimized with respect to these four

parameters. A method for determining these four parameters

is presented and is applied to several special cases or arcs

and the errors checked. The paper reports i_ i_s conclusions
the following:

"None of the numerical results obtained can be

regarded as satisfactory, or, in fact, as

fulfilling the expectations that one might have
for the theory. Nevertheless, there are a

number of reasons for expecting that further

development of the theory should lead to useful

and interesting results."

Based on this statement, we may conclude that this is an
n_mn!shea problem.

The ninth paper. <_,rltten by the Universit[,, of Kentucky
team, presents deve!epmen_ of the convergence of _he series

used in Hill's solution of the three body problem. An

interval in which the series is convergent _^_as es_ablisheJ.
Future _,,,"% .... _ _ _. .... of..... _. _v__,__ attempt to enlarge the est_,m_e_ t_:!,_
interval and to develop some transformations wr_ich perm.!t
comparison with known results.

The last two papers on celestial mecha_izs ,.ere a_tempts
to find improved estimates to the r,_stricted thr_e b(-ly

probleko Work w_!! continue on both approaches until it
becomes evident that no further advance can be made.
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The next two papers on exploitation of large computers

deal with statistical methods of developing steering equations

for the adaptive guidance mode.

The first (tenth) of these papers, by R. E. Wheeler of

Hayes International Corporation, presents a mathematical

model for fitting the steering function for a simplified

problem. The solution presents a ratio of polynomials based

on the necessary condition of Euler and the first integral

of the system of differential equations. The so!u_ion gives

tan X (X -the steering angle) as a function of time and state
variables along the trajectory. This function evaluated

t = t o should be the desired "steering function" as normally

developed. No end-conditions are considered. It is proposed

that they are to be obtained by the curve fitting of the

constants of integration.

The eleventh paper, written by Shigemichi Suzuki of the

University of North Caro!ina_ deals with the application of

linear prograr_m_ing te_li±_ques to _ _t__t_on_............ of the

steering and time to cutoff functions. Two problems are
discussed. In the first problem, the ratio of linear combi-

nations of known functions is fixed in form, and coefficients

are sought such that the Tchebycheff criterion of minimizing

the maximum deviation over a finite point set is satisfied.

The second problem is to find the "simplest" function from

the given class of ratios of linear combinations of known
functions where deviation over a finite point set is held

less than a preassigned value. The criterion for "simplicity"

is either (!) the minimization of the number of non-zero terms

in the approximation, or (2) the minimization of the sum of

the orders of the highest order non-zero terms in the numer-
ator and the denominator. Work has been initiated at MSFC to

check the feasibility of the methods on problems of fitting

steering and time to cutoff functions.

The last two papers of this report deal with special

cases in the theory of calculus of variations. They are by

Henry J. Kelley of Analytical Mechanics Associates, Inc.

The first of these papers is on the singular extremals

in Lawden's problem of optimal rocket flight. The analysis

presents an alternate method for the derivation of Lawden's
intermediate thrust solution. This is done by a transforming

to a new set of coordinates and a redevelopment of the problem

in these coordinates.



The last paper of this report deals with the same
problem as the preceding paper where the differential
equations are linear in a single control variable. The
paper proposes a transformation that reduces the dimension
in the state space.

One paper prepared by Harry Passmore, III of Hayes
International Corporation, proposing to uncouple the equations
of motion is not included. The variables are separated by a
long and laborious procedure of repeated messy operations.
A copy of this report will be furnished to interested persons.
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by

Hans K. Hinz

Summary

Optimum trajectories and thrust steering programs for
thrust-limited propulsion systems are determined for Earth-
to-Mars missions in the time period from 1965 to 1973.
Vehicle performance is evaluated for thrust/initial weight
ratios from 8 x 10"5 to 10-3 . Optimum launch dates occur
once every synodic period (780 days), with the best depar-
tures taking place in 1971, the "vintage" year for low-
thrust trajectories.

INTRODUCTION

In "Progress Report Nos. i and 2 On Studies in the

Fields of Space Flight and Guidance Theory" (Refs. i and 2)

an account is given of the theoretical development of sev-

eral successive approximation techniques for optimizing

rocket trajectories involving terminal (equality) con-
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straints and control variable (inequality) constraints.

These reports also contain descriptions of the two computer

programs for determining optimum, three dimensional, low-

thrust interplanetary trajectories. One program is special-

ized to treat constant, continuous thrust rockets; the

other deals with variable, but limited thrust engines. The

propulsion system for both programs is assumed to have con-

stant specific impulse and only one maximum value of thrust.

For the system model and equations of motion, it is

assumed that the entire flight is under the effects of

solar gravity only. The orbits of the planets of departure

and destination are taken as elliptic and noncoplanar. For

each trajectory to be optimized, the planetary orbital ele-

ments are computed for the date of departure, using ephem-

eris information, and taken as constant throughout the

flight. Although the computer programs are capable of

dealing with missions initiated from any position in the

solar system, it is usually assumed that the vehicle has

been launched from some planet of departure and boosted to

a velocity sufficient for escape from that planet. Thus,

the initial components of position and velocity of the

vehicle with respect to the heliocentric-inertial system

are taken to be identical with those of the planet of de-

parture. By appropriate selection of the penalty constants

which govern convergence to the desired terminal condi-

tions, it is possible to study missions such as orbital

transfer, rendezvous , intercept, and others.

Optimization is achieved by determining the time vary-

ing control functions which minimize the final value of

time. These functions consist of the two thrust steering

angles and the thrust magnitude within limits from zero to

some maximum value. For the constant thrust application,

the fuel expended is not limited, and minimizing time is

equivalent to minimizing fuel. For the variable thrust

case, the total propellant allocated is less than that re-

quired for the corresponding constant thrust example, and

as a consequence one will obtain coasting arcs or thrust

magnitudes less than maximum.
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COMPUTATIONAL _.ILESULTS

Optimum Earth-to-Mars rendezvous trajectories have

been computed for departure dates from January 1965 to

September 1973, covering a range of four synodic periods of

Mars. For this phase of the numerical studies, the thrust

magnitude is constant and continuous. Comparison with

previous circle-to-circle coplanar studies indicates that

there are no distinct or highly significant differences be-

tween two-and three-dimensional optimum trajectories. This

is due to the small inclination of Mars' orbit (1.85°).

The differences that do exist appear to be associated main-

ly with the eccentricity of the orbits of the two planets.

A portion of these results, for a thrust/initial weight

ratio, T/Wo, of 8.47 x 10 -5 and a specific impulse of

5685 seconds, is shown in Fig. i.

Examination of the trajectories indicates that there

are three types of optimum rendezvous trajectories, as

shown in Fig. 2. For one type, the vehicle's trajectory is

entirely within the orbits of Earth and Mars. Because the

planets are in a more favorable position, this class of

transfers includes the "minimum minimorum" of the minimum

time rendezvous trajectories. At progressively later

launch dates, Mars falls behind the Earth, resulting in a

second type of transfer for which the vehicle flies out

past the Martian orbit and "waits" for the planet to over-

take it. At still later launch dates, Mars is so far be-

hind the Earth that the vehicle "decides" that rather than

wait for Mars it is more "profitable" in terms of time and

fuel to increase its angular velocity, passing closer to

the Sun than the planet Mercury, and eventually catching up

with Mars. Although this maneuver requires an additional

revolution about the Sun, the transfer time is less. At

the point of transition between the second and third type,

two optimum solutions exist, each with the same values of

transfer time, departure date, and time of arrival, but

each having an entirely different trajectory and thrust

steering program. Two such transition points are shown in

the upper part of Fig. i where the curves intersect.
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In order to appreciate the performance capability of

low-thrust propulsion systems, a limited vehicle parameter

variation was carried out. For this phase of the study

four values of T/W o were selected, and the specific im-

pulse of the rocket engine kept fixed at 5685 seconds. Op-

timum rendezvous trajectories were computed for values of

launch date in the vicinity of time when the planets are in

the most favorable position. The results for 1971 are

shown in Fig. 3. From this figure, and from similar plots

for other favorable time periods, the minimum transfer

times have been determined and are summarized in the table

below.

-5
8._6, x I0

-4
2 x i0

-4
5 x i0

-3
i x i0

Jan.-Feb. Mar.-Apr. May-July Aug.-Sept.

1967 1969 1971 1973

O A 10__0_ 186 I==_uu _OU

132 120 108 116

80 72 66{ 72

- - 45¼ 47

The findings clearly indicate that 1971 is the "vintage"

year for low-thrust trajectories. These results are plot-

ted in Fig. 4 on a log-log scale and exhibit almost a lin-
ear variation.

The minimum-time optimum trajectories for the results

tabulated above are shown in Figs. 5 to 8. Examination of

the trajectories reveals that rendezvous for the superior

1971 launch dates occurs when Mars is near, and preferably

just past, the perihelion of its orbit.

The componentof the thrust steering angle in the plane

of the ecliptic generally displays the same characteristic

motion (Figs. 9 and i0). Early in flight this vector com-

ponent points generally in the direction of motion and away

from the sun. About half-way in flight it rotates almost
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abruptly from a position pointing away from the sun to a

position pointing toward the sun. Thereafter the vector is

generally in the direction of motion and toward the sun.

This steering program is remarkably similar to the one de-

rived in the linearized near-circular orbital transfer

studies (Ref. 3). A comparison of the two programs is

shown in Fig. ii. The component of the thrust normal to

the plane of the ecliptic is generally quite small (±5°).

This may be expected since it is this control component

which must change the small inclination of the vehicle's

orbital plane by 1.85 degrees without duly penalizing the

in-plane energy-producing component of the thrust vector.

In addition to the variation in T/Wo, the effect of

changing the specific impulse, Is, was also briefly ex-

amined. For values of I s 100% larger, the transfer time

increased only slightly by 2-3%. The real significance of

the more efficient engines, of course, is in the greater

payloads delivered.

Optimum Earth-to-Mars intercept trajectories were also

computed for vehicles with constant continuous thrust en-

gines. Because of the removal of constraints upon the ter-

minal values of the velocity components, there is an appre-

ciable savings in transfer time --as much as 40%. Whether

or not there is a proportional savings in fuel consumed for

the corresponding fly-by-and-return mission, could be de-

termined only by detailed analysis of the round-trip case.

Optimum Earth-to-Mars variable thrust rendezvous tra-

jectories were determined for several launch dates in the

vicinity of January 1967 and May 1971. These dates corre-

spond to times when the planets are in very favorable posi-

tions. As in the previous circle-to-circle coplanar stud-

ies, the thrust magnitude programs have a bang-bang throt-

tle characteristic, the transfers consisting of an initial

full throttle period, a coasting period, and a final full

throttle period. The significant feature of these variable

thrust-limited vehicles is that a considerable reduction in

fuel requirements may be achieved if the transfer time is

permitted to be slightly longer. For example, the results
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of the January 1967 launch indicate that a 5% sacrifice in

time yields a 30% savings in fuel. The ratio, however,

does not remain constant, i.e., if the time is permitted to

increase 15% the savings in fuel is 50%.
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FIG. 2 THREE TYPES OF OPTIMUM EARTH-TO-

MARS RENDEZVOUS TRAJECTORIES
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FIG. 4 MINIMUM TRANSFER TIMES FOR

OPTIMUM CONTINUOUS LOW-THRUST

EARTH-TO-MARS RENDEZVOUS

TRAJECTORIES
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FIG. 5 MINIMUM-TIME OPTIMUM EARTH-TO-

MARS RENDEZVOUS TRAJECTORIES
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FIG. 6 MINIMUM-TIME OPTIMUM EARTH-TO-

MARS RENDEZVOUS TRAJECTORIES
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FIG. 7 MINIMUM-TIME OPTIMUM EARTH-TO-

MARS RENDEZVOUS TRAJECTORIES
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FIG. 8 MINIMUM-TIME OPTIMUM EARTH-TO-

MARS RENDEZVOUS TRAJECTORIES
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FIG. I0 THRUST STEERING ANGLE FOR

TIME OPTIMUM EARTH-TO-MARS
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FIG. II
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SUMMARY

Variational problems characterized by discontinuities arti-

ficially introduced by the problem formulation are examined. The

discontinuities apply not only to the parameters in the differential

equations of constraint but also to the state variables themselves.

Two approaches to these problems are presented. The optimal flight

of a throttleable, multistaEe rocket is discussed extensivelv.

INTRODUCTION

This report has as its subject two methods of treating dis-

continuous variational problems and their application to the optimal

flight of throttleable, multistage rockets. The discontinuities

considered are introduced artifically by the problem formulation

and involve not only parameters in the differential system equations

but also the state variables tbemselves.

One of the methods has been presented by Cicala in Ref. i.

It is both flexible and powerful. However_ it has received little

attention_ perhaps because of the high degree of ingenuity by which
it is established.
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The alternative method utilizes the wavelet-wavefront approach

to the calculus of variations. It provides an excellent intro-

duction to discontinuous variational problems in that it is estab-

lished by elementary and straightforward reasoning. By expressing

all the control alternatives in terms of geometric figures there

is no doubt as to the validity of the results. However, these

properties prove more cumbersome than helpful as we pass from sim-

pler to more complex problems.

The properties of wavelets and wavefronts will be summarized

in the following section in order to establish nomenclature and

notation.

WAVELETS AND WAVEFRONTS AS A THEORETICAL BASIS FOR THE CALCULUS

OF VARIATIONS

Wavelets

We consider minimum and maximum time trajectories (extremals)

obeying differential system equations of the type

xi = fi(xj, Uk, t) i = i, ..., n (i)

lhe n aitferentiatea variables x. are designated the state

vect_ sn4 the m undifferentiatedlvariables u k the control

vector. Restrictions on the range of some or all of the u k may

be given in the problem formulation. The independent variable

t is as usual designated time.

A wavelet is defined in x-space through the following

equations

dx i = x i dt = fi(xj, Uk, t) dt i = i, ..., n (2)

In the above equation the state vector is held fixed. The control

vector takes on all admissible directions and magnitudes• We

assume that f remains finite• The value of the differential dt

is of course tbe same in each of the n equations• U does not

change during the interval dt.
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To illustrate some of the dimensional possibilities of a

wavelet we assume for the moment tbat n equals three. Then if

m = i the wavelet is a line which may or may not be closed. If

m = 2 the wavelet is a surface. If m = 3 tbe wavelet is a solid.

The wavelet in control variables problems is thus a gener-

alization of the indicatrix (Ref. 2) of the non-control-variable

problems of the classical theory.

Wavefronts

When U is given as a function of time between t and tI
a trajectory is defined by Eqs. i. As U(t) is varied°(with

to, tI and X(to) fixed) the end-points of these trajectories cover
a reglon in x-space. A wavefront, or transversal surface as it is

usually called in the calculus of variationsp is defined as the

boundary between the reachable and the non-reachable points. It

is thus an n-dimensional hypersurface regardless of the dimension-

ality of the wavelets.

Clearly the wavelets of the points on the transversal for time

tI determine the transversal at time t I + dt in the same way as

wavefronts are determined in Huygens' theory of optics. This is

true again regardless of the dimensionality and other properties of
the wavelet.

Optimal Control

Given a point on a wavefront we desire to know the point on

the associated wavelet that will lie on the new wavefront. Let

us assume that the wavefront possesses a unique tangent hyperplane

at the point in question. We designate the n-dimensional vector

that is normal to the plane and points away from the wavefront

(outward) as %. The control vector that transfers the trajectory

to the new wavefront is the one that imparts to f the largest

component in the % direction. That is, we must choose the ad-

missible U that maximizes the scalar product % • f. The re-

lation that distinguishes the optimal U from an aribtrary admiss-
ible U' is thus
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!

I " f(X, U, t)>/ % • f(X,U , t) (3)

Eq. 3 denotes the maximum principle of Pontryagin. It can be de-

rived using wavelets (Ref. 3) in the same way as the Weierstrass

excess function is derived in the classical theory using indica-
trixes.

As a general rule Eq. 3 determines a unique U for a given

%. If the direction of h is not fixed by a wavefront we may re-

gard U as function of this direction. Under these circumstances

the h direction replaces U as the independent variable. U is

not, of course, a function of the magnitude of the h vector. In

addition, many directions will determine the same U when U is

absent from some of the Eqs. i, or when there are constraints on

some of the components of U. If we replace U with h as the

independent variable in Eqs. 2 the points generated will be on

the outer boundary of the wavelet.

The product h • f is called the Hamiltonian and is denoted

by H.

The Normal Vector

If we follow h along a trajectory we find that it obeys the

followin_ differential eauation

n 8f

= - I ---/ _. i = i, n (4)hi _x. 3 "'''

j=l i

h is thus identical with the Lagrange multiplier vector of Mayer

problems (integrand identically zero) and when H = +i with the

_t/_x i vector of the Hamilton-Jacobi theory•
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Minimum and Maximum Time Trajectories

Figure I shows the projection of wavefronts and extremals on

a plane containing the initial point. We have assumed that motion

is possible in all directions from the initial point. Thus by

"chattering" it is possible to remain indefinitely in the vicinity

of this point. For this reason solutions to a maximum time problem

do not exist. We note that the wavefronts surround the initial

point and that tbe f vector maintains a positive component in

the _ direction (H>O).

x i

1
X°

3

Fig. i Wavefronts with Minimum-Time Trajectories

X,

l

initial

point

J

Fig. 2 Wavefronts with Minimum-and Maximum-Time Trajectories



In Fig. 2 motion is not possible in all directions. Some
extremals of the family provide the minimum time and some the max-
imum time to their end points. The wavefronts do not surround the
initial point. Minimum and maximumtime trajectories are character-
ized by final values of H that are positive and negative respect-
ively.

Wavefront Corners

We now discuss the effect of constraints on U on the shape

of the wavefront. When there are constraints, a sub-family of ex-

tremals with varying % time bistories might have identical U

(and therefore K) time histories. Thus what we actually have is

a single extremal associated with a sub-family of % vectors. As

we move along a wavefront to this extremal the normal vectors

defined along our path will approacb an outer member of the

sub-family. The particular member approached will be a function of

the path taken. The tangent hyperplane that is approached will

therefore also be a function of the path so that the wavefront must

have a corner at this extremal.

A PROBLEM WITH DISCONTINUOUS STATE VARIABLES

We are now ready to apply the wavelet-wavefront basis of thP

cd±cuius ot variations to a problem with discontinuous state vari-

ables. To illustrate the basic principles of tbe method a simple
problem will be discussed.

We seek the extremals having a common orgin, obeying system
equations of the form

xI = Xl(X I, x2, u, t) (5a)

x 2 = x2(xl, x2, u, t) (5b)
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and subject to the condition that whenever the variable xl re-£

aches the value _ it is incremented by the constant Ax whose
I . . I

magnitude is arbitrary• The control varlable u Is unbounded;

Xl and x2 are finite at all points.

The problem is depicted in Fig. 3. Since the transversals

surround P the figure indicates that only minimum-time extremals

(H>0) originate from this point• The case with both minimizing and

maximizing extremals will not be discussed.

!

The extremal to point A is incremented to point A at time

tA. Recalling the discussion on optimal control, we regard u in

Eqs. 5 as determined by the _ direction (i.e. %1/%2). We intro-

duce the following notation:

f- X(Xl, x 2, %1/_2 , tA)

g - x(x I + Ax I, x 2, _i/_2 , tA)

is the Lagrange multiplier at A

I

is a Lagrange multiplier at A

I

At time tA + dt a wavelet has formed around the point A Also

at this time an extremal has reached Xl = _i at B and been in-!
cremente_ to B . The wavefront at tA + dt must pass through the

point B ,an_ be tangent to the wavelet. Also the line segments

A B and A B must have equal lengths. Utilizing relations from

plane geometry, we see from Fig. 3 that

_q fl dt + f2 dt = _2 gl dt + g2 dt
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_l+aXl -

wavelet

wavefr,

dt

A

B

tA+dt g2 _ I

hi fl

ele

x2

dt

Fig. 3 Wavelets and Wavefronts for a Problem with Discontinuous

State Variables
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This equation determines the unknown _i/_2 . But should the multi-

pliers be 41_i and 41z2 or "_i and -_2 ? From Fig. 3 (as well

as Fig. 4 below) we see that that _2 must be given the same sign

as %2 • Since the subsequent course of the extremal is independent
of the magnitude of _ we will scale this vector so that our re-

suits will have a simple form. We therefore take _2 = %2" We can
now write

%1 fl + %2 f2 = _i gl + %2 g2 - H (6)

In this form the solution requires %2 to be continuous and %1
to be incremented so that the Hamiltonian is also continuous.

I

If the wavelet has no regions of concave curvature (and,B is
outside the wavelet) there will be two tangent lines from B . If

concave regions are present there will be more than two tangent

lines. Clearly the wavefront will be defined by the two outer

lines. Solutions corresponding to inner lines were eliminated from

Eq. 6, when we employed Eq. 3 which incorporates the Pontryagin

maximum principle. (That is, when we replaced U using Eq. 3, a

portion of the complete outer boundary of the wavelet might have

been eliminated.)

However, we must not always expect two solutions to Eq. 6.

This is because in some regions of the wavelet, g may have a neg-

ative component in the _ direction making H<0 along part of the

wavelet. (We have indicated that the left side of Eq. 6 is positive.)

For the example of Fig.,3 we know that there are two solutiogs since

the wavelet surrounds A,. In this example the extremal PAA splits
into two branches at A .
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a b e

d

! !

Fig. 4 Possible Relations between B and the A Wavelet

Equation 6 also has two solutions when the wavelet has the

properties shown in Fig. 4a. Figure 4b shows how but one sol-

ution can be present. Figures 4c and 4d show,that there can be

no solution. In thes_ cases the extremal PAA B takes less time
tban the extremal PBB . The latter must therefore be terminated

at point B.

extremals _B"_ B v

extremals___

Fig. 5 Hypothetical Initial State of the Incremented Wavefront

Perbaps the initial state of the incremented wavefront is worthy

of some discussion. Let us assume that PA is the first of all the

extremals that originate at P to reach the Line x I = E 1 and be
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incremented to A wavefront will be determined,by the
TheB_ew B" side of A We

A' wavelet and points and on either,, .

ask whether the tangent lines from B' and B will be horizontal•

If they are _ot a sub-family of extremals will emerge from the
channel PAA (Fig. 5). This would give the first extremal to be

incremented a character quite different from those that are incre-

mented afterwards.

At point A the line x I = x I is tangent to the wavefront.

Therefore, the normal vector is vertical (_2 = 0). Assuming fl>0,

the ratios of the distance (%1/%2)fi dt (cf. Fig. 3) to the dis-

tances gl,dt andB,,g 2 dt will both be infinite. We conclude that
poimts B and in Fig. 5 should he moved out to infinity and
that the tangent lines from B and B will be horizontal, con-

tacting the wavelet at its highest and lowest points. Tbus the ex-

tremal PAA' splits into two branches at A' in common with those

of Fig. 3.

Let us assume that parameters are present in Eqs. 5 and that

they are changed when x$ is discontinuous, that is, the para-
meters have different values in the equations for f and g. Re-

viewing the analysis of this section we see that it applies witbout

change. The solution given by Eq. 6 also applies to problems with

changing parameters•

The range of problems to which the wavelet-wavefront approach

can be applied could now be gradually extended until the multistag_ _

rocket problem is included. This will not be done, however, since

complex problems can be handled more readily by the analytic metho,J

presented in the next section•

METHOD OF ADJOINED DISCONTINUITY RELATIONS

In this section we present the analytic method devised by

Cicla (Ref. i, p.34). The specific example we will use to ex-

plain the method is a generalization of the previous example.

As before the extremals are incremented when Xl, equals xl.

Instead of two state variables we will bave n and increments will

will be allowed in all of them. The possibility of constraints on
some of the control variables will be considered.
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To be definite we will assume that there is a pay-off function

P(xj (tz), tz). The functional is

Pxtztz n
t i--I

1%i(xi - fi(xj ' Uk' t, c_)) 1 dt

+
tz

!

tA

n I- gi(xj, uk, t, c_)) dt

i:I

n

+ e (Xl(tA) - Xl) + I

i=l

ei(xi(tA' ) - xi(t A) - Axi_

The constraint adjoined by the multiplier e states that the

extremal must intersect the hyperplane Xl = _i at an undetermined

intermediate time tA. The constraints adjoined by the mul£ipliers

e i state that at the time tA' = tA the state variable x. must

bave been incremented by the constant Ax i. Note that at t_e time
!

tA the parameters c_ change to c_.

Throughout the rest of this section we will employ the Ein-

stein summation convention. The first variation is
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5J --
ItA I 5%i(xi - fi) + %iSxi

t
P

+

t z

tk

_iSx i /_gi
5xj + _ 5 dt

+ e (SXl(tA) + Xl(tA)StA) + ei (Sxi(tA') + ii(tA')St A - 5xi(tA)

-;i(tA)StA) + 5 e(xl(t A) -x i) + 5ei(xi(tA') - xi(t A) - ax i)
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+ %i(xi(t A) - fi(tA)) 5t A - _i(xi(tA' ) - gi(tA'))StA + _i(xi(tz)

_p • 8p

- g(tz)) 5tz + _x. (Sxj(tz) + xj(tz)Stz) + _ 5tz
3

After the usual integration by parts we have

5J --
_fi

5_i(xl - fi ) - (_i + _ _j) 5xl" _i _ 5Uk
dt

+
I tz J °5_i(x i - gi ) -

tA '

dt
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+ %iSxi(tA) -_iSxi(tA') + _iSxi(tz) + e (SXl(tA) + Xl(tA) 5tA)

+ ei (Sxi(tA') + xi(tA') 5t A - 5xi(tA) -xi(t A) 5t A)

B e+ 8e(xl(t A) - xI) + 5 i (xi(tA') - xi(tA) " Axi) + %i(xi(tA)'f(tA))StA

- _i(ii(tA') - g(tA')) 5t A + _i(i(t z) - g(tz) ) 5t z
_P

+ _x. (Sxj (tz)

+ X(tz)St z) + 5t z

If there are no constraints on uk

Eq. 3 and we set %'i _fi/_Uk -- 0.

the equality sign applies in

If there are constraints the



41

_f.

inequality sign applies and we must have hi _ 5uk < 0

(summation over i only). Since our conclusions will hold in
either case we will assume the former possibility. The rest of
the integrands _anish in virtue of Eqs. I and 4. Setting the co-
efficients of 5e and 5e. to zero satisfies the discontinuity
relations. After making t_e substitution Dxi(t ) - 5xi(t ) + _i(t)Dt
we have

5J = %iDxi(tA) - H(tA) 5t A - _i DXi(tA') + H(tA') 5tA + _iDxi(tz )

- H(t z) 5t z + e DXl(tA) + ei (Dxi(tA') - Dxi(tA) ) + _x. Dxj(tz)
J

Setting to zero the coefficients of Dxi(tA) , Dxi(tA'), 5tA, Dxi(tz) ,
and 5tz,We have

hl(tA) - eI + e = 0 (7)
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tA =%i( ) - ei 0 i = 2, ..., n (8)

-_l(tA') + e I = 0 (9)

-_i(tA') + e. = 0 i = 2, ..., n (i0)l

-H(_ A) + H(tA') = 0 (Ii)

_P

_i(tz ) + _x. = 0
l

_P

-H(tz)__ + _-{ = 0

The 2n + i equations(7 through i_ determine the 2n + 1 unknowns

_i(tA') , ei, and e. In H(tA') of Eq. ii, U is replaced using Eq.
3 so that the equations are non linear and possibly do not possess

a solution: Eliminating e i from Eqs. 8 and i_ we see that the

%i(i = 2, ..., n) are continuous. We then choose _l(tA' ) so that
the Hamiltonian is continuous as required by Eq. ii. Thls leaves

available e I and _ to satisfy Eqs. 7 and 9. Note that these

results are in agreement with tbose of the previous section.

The trajectory thus determined makes P a smooth minimum with

respect to changes in unconstrained control variables and a sharp

minimum with respect to admissible changes in constrained control
variables.



In the previous section the magnitude of _ was free whereas
here it is fixed. The discrepancy lies in the fact that here a
pay-off is specified as P(xi(tz) , tz) whereas before we merely
sought extremals and left th_ pay-off open. Due to the llnearity
and homogeneity of % in Eqs. 3 and 4 the extremal that minimizes
P(x_(tz) , tz) is identical to the extremal that minimizes k P (xj
(tz_ , t_) except for the magnitude of k. When k is fixed at a
particular value (in this case one), the % magnitude is fixed; when
k is left open, the % magnitude is open.

Of course the discontinuity relations could be generalized so
that the discontinuity occurs at a surface F(x_(tA) , tA) = 0 with

xi(tA') -xi(tA) = G(xj(tA) , tA). This method i§ therefore more

flexible and powerful-than the wavelet-wavefront approach.

ML_ISTAGE R_T FLIghT

System, Multiplier _ and Control Variable Equations

We turn now to the optimml flight of a throttleable multi-

stage rocket. The mass curve is discontinuous at staging points.

The specific examples of planar motion above a flat earth and

in a central gravitational field will be discussed. Three dimensional

examples would present no new difficulties. The system equations for
tbe former case are

• T

Xl = --m sin e - g

• T
X^ = -- COS e
g m
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x 4 = x 2

m = - T/c

x I and x3 are vertical velocity and distance; x2 and x4
are horizontal velocity and distance; m is the mass. The con-

trol variables are the thrust direction angle 8 and the thrust

magnitude T. T bas an upper limit Tu and a lower limit T£.
g is the acceleration of gravity and C the effective exhaust

velocity•

The multiplier equations are

hI = _ 13

12 = _ 14

13 = 0

14 = 0

I T
m = -_ (_i sin 8 + 12 cos e)

m

i

= _ (112 + 122)e
m

(12)
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In Eq. 12 we have substituted for e using the optimizing relations

hi _2

sin e (hi2 + _22)_ cos e ffi(_12, + _22) ½

Collecting the terms of the Hamiltonian that contain
write

T, we can

H = HQ + QT (13)

where

hi %2
Q ffi-- sin 0 +-- cos 0 - __m

m m c

1 (%12 %22)½ %m= _ + - -_

(14)

To maximize H we must set T ffiTu when Q is positive and

T = T_ when Q is negative. Thus the optimal trajectories are

composed of periods of coasting and full throttle burning as deter-

mined by the switching function Q.

For motion in a central gravitational field the system equations
are

2

• x2 _R 2 T

_-- - _ + _ sin e
Xl x3 x 3

• XlX 2
+ _ cos 0

x2 = x3 m
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x 3 = xI

• T
m _ m

C

Here xI is the radial velocity, xo the circumferential velocity,

and x 3 is the radius. R is the raaius at which the gravitational
acceleration is g. The other symbols are defined as before•

The multiplier equations now are

• x 2

hi =-- _2 - _3
x3

• 2x 2 X_!l

_2 = - -_3 hI + x3 _2

2

---f - 2
x 3 x 3

XlX 2

hi " _ _2

x3

• T T
hm = -_ (h I sin e + %2 cos 8) = -_

m m

1

(_i 2 + _22) _

and

It is interesting the expressions for

Q are the same in both problems•

km, sin 8, cos 8,



47

Wavefronts

Xo

i

X°

J

Fig. 6 Final Points of Optimal Trajectories - Fixed Final Time

To gain some conception of the form of the wavefronts we

consider the following pair of problems. The final values of time,

mass, and x_ are fixed in advance. The final values of the other

state variables except x= are free. The final value of x i is to

be maximized for one problem and minimized for the other. As tbe

final xj is varied, with different choices of the final mass para-
meter, we obtain a family of curves of the general form of Fig. 6.

The final points of trajectories with continual full-throttle burn-

ing lie on the outer curve (m = m3). The point designated m o

results from continual coasting: Thus Fig. 6 as well as Figs. 7

and I0 to follow imply T_ _ 0. It is reasonable to assume that a
curve corresponding to a certain fuel expenditure will enclose a

curve corresponding to less fuel. This conclusion will be made

rigorous later on.
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Fig. 7 is identical to Fig. 6 except that tbere is an axis

for the final mass. The xi axis is assumed to be perpendicular

to the page. Instead of a _amily of curves we have a surface.

This surface is the projection of the complete n-dimensional

transversal surface for the given final time onto the three-space

of the figure. This statement is justified by noting that the

transversality relations for the state variables with free final

values (those other than xi, xj, and m) require the corresponding

components of tbe normal vector to be zero.

m

7

X,

i

Fig. 7 Wavefront Projection with Multiplier Vectors for tbe

Rocket Problem
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Whether the wavefront of Fig. 7 is determined entirely by

minimum time trajectories (as is the case in Fig. i) or by both

minimum and maximum time trajectories (as in Fig. 2) will not be

relevant to our discussion.

We note that in Fig. 7 the Am component of the normal vec-

tors along the lateral sides is always positive. This is required

by Eq. 12 which states tbat Am(t) increases monotonically and

Eq. 14 which states that Am must be positive at switching points.
This verifies the statement that curves of lower final mass enclose

curves of higher final mass in Fig. 6.

We now consider a problem identical to one of the pair pre-

viously stated except that the roles of x i and m are interchanged_

that is, the final values of x i as well as xj and t are fixed
and m is to be maximized. The maximum value of m is determined

by the intersection (assuming one exists) of the surface of Fig. 7

with a vertical line having coorinates xi, xj.

We now ask if under the above circumstances there is also a

minimum value of m. This question is of interest to the mathe-

matician although the engineer never tries to maximize the fuel.

Since there is an upper limit on the fuel-flow rate the minimum

could not be below mq (as defined for Fig. 6). There are of

course trajectories tSat reach the point xi, xj, and m 3 at the

given final time altbough their e time-histories are not unique.

Therefore, for tbe sake of mathematical completeness, we close the

surface with a portion of the plane m = m 3.

The upper point and lower edge of the surface of Fig. 7 are

the result of the restrictions on the range of the control variable

T. There is a sub-family of h vectors associated with each corner

point. Each vector in the sub-family associated with a point on

the lower edge lies in the vertical plane that is normal to the

edge.
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Staging with Thrust On

We will assume that staging occurs as soon as a given amount

of fuel has been consumed - that is, when the trajectory plotted

in state variable space intersects the m = • hyperplane. Tbe

time (tA) at whicb this occurs will vary with the T(t) history.

The only state variable to be incremented at staging is mass. The

parameters T , T_, and c may also change. Writing the dis-U

continuity relations explicitly we have

m(tA) - m = 0

xi(tA') - xi(tA) = 0 i = i, ..., n - i

m(tA' ) - m(tA) + Am = 0

This is precisely the form treated in the previous section. We

therefore know that staging does not affect the multipliers

_i(i = i, ..., n - i) and that %m must be incremented so that
the Hamiltonian is continuous

H

HQ

H

HQ

m m

a b

Fig. 8 The Hamiltonian vs. _ for the Rocket Problem
m
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Fig. 8a shows H as a function of %m for the case T_ > 0.

We see that a value of %m exists for every H and that the value

_m must take on after staging to make H continuous is always

uniquely determined.

It is interesting to note that staging can not induce a

change in the thrust from its upper to its lower level (or vice

versa). This conclusion follows from the fact that the discontinuous

terms (m and Am) do not appear in HO (cf. Eq. 13). Therefore the

quantities H, HQ, H - HQ = QT, and t_e sign of Q are all con-
tinuous.

If T(tA) > 0 the expression for Am after staging is

C(tA')

%m(tA') m _m(tA') = T(tA, )

T(tA')

m(t,') (%12 + X22) - Q(tA) T(tA) (15)

J

Staging with Thrust Off

In Fig. 8b T_ equals zero. When staging occurs with

H > HQ (Q > 0 and thrust on), everything is well behaved and there
is no difficulty in drawing all conclusions of the T_ > 0 case.

However, suppose H = HQ_(Q = 0) at precisely the time that the
trajectory reaches the m hyperplane. The trajectory will then

move on this hyperplane during its thrust-off period. Each point

during this period qualifies as the staging point. Two questions

arise. (i) How is the succeeding motion affected by the choice

of the staging point? (2) How should _m(tA' ) be chosen since

it is not determined by Fig. 8b?

Let us define trajectory A as the one for which staging

does not occur until the end of the coasting period. During this

period & _nd _m are zero and Q is negative. From Eq. 14

(%12 + %22) _ must decrease tola minimum and then increase until

Q is again zero. (%1 z + %22)_ will have identical values at the

start and finish of the coasting period.
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Let us movealong points with Q > 0 of the t = tA trans-
versal surface until trajectory A is reached. We have said that
QT is continuous at staging. Therefore as trajectory A is
approached and Q(tA) goes to zero Q(tA' ) will also go to zero.
Question 2 is therefore answered for trajectory A by stating that
_Lm(tA') must be chosen so that Q(tA' ) is zero.

Let us define trajecLory B as the one for which staging
occurs as soon as the m = m hyperplane is reached. Using the
above argument we see again that %m must be incremented so that
Q = 0 after staging. It also follows from the above discussion
about the terms that appear in Eq. 14 that the value Em takes on
after staging on trajectory A equals the value Xm had after
staging on trajectory B (Fig. 9).

m

I

I
trajectories

I
I

I

I
trajectory A I

I
I

i
coasting I

period I

t

Fig. 9 _ vs. Time for Staging at tbe Switcbing Points
m
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After staging, trajectory B lies on the wavefront. We will
assume that in order to remain on the wavefront it must coast on

the m = _ - _m hyperplane. We will show that this assumption
does not lead to a contradiction.

The position and velocity of the rocket during coasting are

not affected by the value of the mass. Therefore, during coasting

the differential equations for the Lagrangemultipliers (except Am)

are independent not only of Am but also of the mass. Therefore,

the characteristics of Q for trajectory B will be identical to

those of trajectory A. Q will become negative immediately after

the staging and will return to zero at the same time as the Q for

trajectory A. This behavior of Q is in agreement with the assump-

tion that coasting will occur.

To summarize - during the coasting the state variables and

mulitpliers (except for m and Am) are the same for trajectories

A and B. After the staging for trajectory A the trajectories

are completely identical.

Let us define trajectory C as representative of those for

which staging occurs at an intermediate coasting point. After

staging the mass as well as the other state variables will have

values identical to those of trajectory B . This means that

the wavefront defined on the hyperplane m = • - Am by trajectory

B without regard to trajectory C is valid even after trajectory

C is taken into account. After the staging for trajectory C, Xm

must be incremented so that % is normal to the existing wave-

front. Tbis means that %m must take on the value it has on tra-
jectory B and that trajectories B and C will thereafter be

identical.

We note that Eq. 15 cannot be used to calculate %m for tra-

jectory C because T(tA) = T(tA') = 0. However, we have demon-

strated that trajectories A, B, and C are identical after the

staging for trajectory A. Since we know how to treat trajectories

A and B, trajectory C can be ignored.
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Continual Burning Before Staging

In this section we consider those trajectories that lie along

the bottom edge of the transversal surface (Fig° 7)o Q must be

non-negative and must have been non-negative at all earlier times.

As mentioned above there is a sub-family of % vectors associated

with each trajectory (Fig. 7). The subfamily is bounded by vec-
tors normal to the bottom and lateral side of the transversal sur-

face. After staging there will continue to be a sub-family of

vectors that transfer each trajectory to the wavefront and therefore

the latter will continue to possess an edge.

We will show that when any _ of the pre-staging sub-family

has been incremented so that H is continuous (i.e., using Eq. 15),

it will be included in the post-staging sub-family. To do this we

scale the vectors of both sub-families so that their elements except

for %m equal those of the vector under consideration. The values

of %m in both sub-families now run from finite upper values (given

by the vectors normal to the lateral sides) to minus infinity (for

the vectors normal to the bottoms).

The two vectors normal to the lateral side are related by

Eq. 15. If we replace Q(tA) using Eq. 14 we see that %m(tA')

varies directly with %m (tA). Therefore, as %m(tA) is varied

from its upper limit to minus infinity %m(tA') takes on the

values of the post-staging sub-family - Q. E. D.

Next we show that if Xm is incremented so that H is con-

tinuous, there will be a one-to-one correspondence between the

vectors of the sub-families for points before and after staging.

That is, if two vectors have distinct directions before staging

they will continue to have distinct directions after staging re-

gardless of bow they are scaled. This property is of value when

a search procedure is used to find the particular initial

vector determining the trajectory that meets specifie_ terminal

conditions.

!

We consider the vectors h and h of the sub-family corres-

ponding to a point at t A. They obey the following relations-
I !

h i = k I h i (i = i, ..., n - i); Xm = k2 _ m" To make the Hamil-
tonians continuous we have
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n-i n-i

fi + ?_ f =X i m m L

i=l i=l

Ai gi + _m gm
(16)

n-i n-i

i kl %i fi+k2 %m fm = i kl %i

i=l i=l

gi + k3 _m gm (17)

The vectors will have the same direction after staging if k 3 = kl.

Multiplying Eq. 16 by k I and subtracting from Eq. I_ we have

(k2 - kl) _m fm = (k3 - kl) _m gm
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k3 will equal k I only when k 2 = k I. But tbis contradicts our

assumption that the vectors had different directions before staging.

Therefore the procedure derived by the method of adjoined

discontinuity relations should be applied not only to trajectories

on the lateral side on the transversal but also to trajectories on

the bottom edge.

Low T/m after Staging

We have said that the mathematically complete extremal family

should include trajectories that end on the horizontal bottom

(excluding the edge) of the transversal surface. They are without

value for the engineer since there other extremals that attain the

same values the time and xi (i = i, ..., n - i) but with less
fuel_

In multistage rocket flight it is possible to find similar

valueless trajectories that terminate not on the bottom but on the

lateral side. This situation is illustrated by Fig. i0 which shows

a wavefront projection similar to that of Fig. 7. The circumstances

described above arise because a vertical line that intersects the

lateral side with m < _ - Am will intersect again witb m > _.

The situation is characterized by Xm < O. From Eq. 15 we

see that _ will take on a negative value when the T/m after

staging is Tow. In engineering temns the first stage so far out-

performs the second tbat the latter should never be used. Thus

engineers should reject those trajectories that lie on the lateral

side of the transversal (i.e., those that have undergone a switch

in the thrust level) and have _m < 0.
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m

m

m

Xo

l

Fig. I0 Transversal Surface with Low T/m After Staging

Unfortunately this test cannot be applied directly to tra-

jectories that iie on the bottom edge of the transversal. It is

necessary to compute a neighboring trajectory that possesses a

very short coasting period and tben apply the test.

In this section we have seen the advantage of looking at a

problem in the large. Our result could not have been obtained if

we had restricted ourselves entirely to the method of adjoined

discontinuity relations.

CONCLUSIONS

Two methods of treating discontinuous variational problems

have been presented. The advantages of the wavelet-wavefront method

are that the problem is viewed in the large and that it is easily

comprehended by the student. The advantage of tbe method of ad-

joined discontinuity relations is in flexiability.
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We have reached the following conclusions regarding optimal

multistage rocket flight:

At staging the %.(i = I, ..., n - i) are continuous
l

but %m should be incremented to make the Hamiltonian
continuous.

Staging never induces a simultaneous switching of the
thrust level.

When the lower thrust level is at zero, staging at either

a switching point or an intermediate coasting point will

result in the same restart time and subsequent motion.

Trajectories that bave undergone a switch in the thrust

level and have tbe final _ < 0 are not fuel-optimal.
m
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SUMMARY

A differential correction scheme is developed for the improvement of the

approximate initial values of the adjoint variables so that an integral functional

satisfying desired boundary conditions is optimized. The adjoint variables

satisfy a system of equations that are developed by applying the classical methods

of the calculus of variations, properly extended, or Pontryagin's maximum principle.

Approximate initial values for the adjoint variables are assumed.

A general transition matrix is derived for the variations of the end con-

ditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting program and of the final time of the

nominal optimum trajectory. An iteration scheme also is discussed for the con-

vergence of the differential corrections to the desired end conditions.
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I/ST OF SYMBOLS

a

c

E

e

F(t)

! ,_u)

H

h

m(t)

N

n

R

P¢i

Semimajor axis of Kepler orbit

Gas exhaust velocity

Eccentric anomaly

Unit vector along the thrust direction

Partials of the vector functions f and g with respect to the
vectors of state variables x and adjoint variables 2[

Integral functional to be optimized

Vector function of state variables (n-dimensional)

General form of vector state variables

Scalar functions relating position and velocity vectors a time t
with initial position and velocity vectors for the Kepler problem

General form of vector adjoint variables

Hamfltonlan

Angular momentum vector R ×

Magnitude of angular momentum

Mass of space vehicle

Number of switchings of thrusting program

Mean motion

Position vector of the vehicle

Velocity vector of the vehicle

Transformation of variations of conventional state variables to

those of the orbit parameters
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r

r

T

t

uAt}

U

V

V

Xo( 

x_(t)

x(t)

y(t)

Z (t)

Yx, y (T, to)

General vector of state and adjoint variables

Magnitude of position vector

Switching function for engine, "on" or "off"

Final time

Time

Control function of time

Control region (independent of time)

Velocity vector of vehicle

Magnitude of velocity vector

_x(T) _(T)

Transition matrix of the partials bx(t¢_ and

Integral to be optimized

State vector variables (n-dimensional)

Augmented state vector (Xo, x)

Vector of adjoint variables (n-dimensional)

Augmented vector of adjoint variables (yo,y)

by (T) by (T)

Transition matrix of the partials bx(t__ and bY(to) respectivly

GREEK LETTERS

[r(T,to)]

Set of orbit parameters

General transition matrix of

of thrusting program

including the optimum change

The first six rows of the general transition matrix IT]

r 7

5_ (tj)

_..
Ij

The last row of the general transition matrix" [r ]

lira [k (tj-() -_(tj+ ()] at time t. of change of thrusting program
(-'O J

lim [_(tj-¢)- _r(tj+¢)] at time t. of change of thrusting program
(-,O "]

Kroneker's delta

Variation of the set of orbit parameters
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_'r_(t)

 s(t)

AT

0

_(t,t o)

_(t, tc)

[5]

Variation of the general vector of state and adjoint variables due
to the control vector change Au

Variation of the vector function of the state variables due to con-

trol vector change Au

Variation of the vector function of the adjoint variables due to the
control vector change Au

Variation of the general vector of state and adjoint variables

Variation of the switching function S(t)

Variation of the final time T

•Eccentric anomaly measured from initial position

Vector of adjoint variables (Y4' YS' Y6 )

Gravitational constant times mass of the attracting body

Vector of adjoint variables (Yl' Y2' Y3)

Transition matrix relating variations of the state variables x

adjoint variables y at time t with those at t o

Transition matrix of the set of orbit parameters

General transition matrix of

of the thrusting program

andthe

including the optimum change

The first six rows of the general transition matrix [_]

The last row of the general transition matrix [G]

SUBSCRII_TS

i,j

0

Components

Initialvalue of time t o

SUPERSCRIPTS

T

A

-1

Differentiation wrt time

Transpose of a matrix

Vector or matrix reduced to Six rows

Inverse of a matrix
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INTRODUCTION

In the problems of the calculus of variations, a system of partial differ-

ential equations must be solved with specified boundary conditions. In addition
,L

to the state and control variables that appear in the equations of motion, the

inequalities of constraints, and the functional that should be optimized, there

is a number of adjoint variables that satisfy additional equations for the optimi-

zation of the given system. These equations are derived by the application of

the classical methods of the calculus of variations, properly extended, or from

Pontryagin's maximum'principle [I], [2].

When some approximate values of the adjoint variables at the initial time

t o have been calculated, then, by numerical integration of the above systems of

equations, an optimal solution is obtained that does not satisfy the desired end

conditions. In this paper, a differential correction scheme is developed that" will

improve the approximate initial values of the adjoint variables so that the optimal

solution will satisfy the desired end conditions. A general transition matrix is

derived for the variations of the end conditions caused by the variations of the

initial values of the adjoint variables, including the variations of the thrusting

program of the nominal optimum trajectory and the variation of the final time.

An iteration scheme also is presented for the convergence of the improved

values of the adjoint variables to those of the optimum solution.

First, the general equations of the state variables, used mostly as

constraints, are given, together wi_ the equations of the adjoint variables.

Second, the variational equations for the above systems of equations are

derived, and an application to the problem of minimizing the fuel of a space

vehicle flying between two given boundary points is given as an example.

Third, a differential correction scheme is derived for the improvement of

the approximate initial values of the adjoint variables, and'an iteration scheme

is presented for the convergence of the improved values of the adjoint variables,

so that the optimum solution will satisfy the desired end conditions. Finally,

conclusions and recommendations are presented for the application of this

scheme to the actual flight of space vehicles.
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FUNDAMENTAL SYSTEM OF EQUATIONS

State Variables

The motion of a vehicle is characterized by the vector variable x(t) belonging

to the vector space W at any instant of time t. It is assumed that this motion is

controlled by a control vector u(t).

The fundamental system of equations of state variables is given by

_i(t) = fi_(t),u(t)) (i= i,2,...n) (_)

where x{t) is an n-dimensional piecewise differentiable state vector, and u(t). is

an r-dimensional piecewise continuous control vector belonging to an arbitrary

_nntrnl region U that is indeuendent of time..The functions f, are defined for
........ --- - _ ' JL

x ¢-W and for u __U and are assumed to be continuous in the variables x(t) and

u(t) and continuously differentiable with respect to x(t). For a certain admissible

control u(t), the motion of the vehicle x{t) is uniquely determined.

The integral functional to be optimized is

T

x°(T) = _t _o(_(t),_u(t))dt
0

The necessary conditions for the optimum control vector u(t) of Eq.(2) are

formulated for fixed boundary conditions of the state variables x(t_ and x(T)

and for free end time T.

_)

Adjoint Variables

For the optimum solution of Eq. (2), another system.of equations is con-

sidered. This system is linear and homogeneous in the adjoint variables

(t) = (Yo, Yl,.--Yn ) = (Yo' y) which is an (n+l)-dimensional continuous vector,

and is given by

n _i _ (t) ,u (t) )
= _ __. _ xi yj (t) (i -- o, i,... n)_i(t)

j=o

(3)



66

The Hamiltonian _(x(t), u(t), l'(t)) is defined by

n

= _, Yi(t) f i ( _x(t) ,_u(t) )

i=0

(4)

and the systems of Eqs. (1), (2), and (3) correspond to the Hamfltoni_n system

_i(t)= _
_Yi

(5)

Pontryagin's maximum principle and transversality condition give, for

optimal Xo(T), the function _(x(t),u(t), _,(t) )of u (t) belonging to U attains its

maximum at the point u(t), i.e.

(x(t),u(t),y(t))= sup JD"(_(t),u(t),_(t)) = 0
u6U

Yo(t_}< 0 and Yk(T) = 0

(6)

where the subscript k corresponds to the subscript of the state variables for

which the terminal value Xk(T ) is free. For most of the engineering applications,

we have Yo _ 0, which is normalized to Yo = -1.

(L)
The Lagrangian multipliers k_(t) of the classical calculus of variations are

related to the adjoint variables y(t) by the relationship

(L) bfo(X(t),__(t),u(t))
),i(t)= _. Yo (t)+ Yi(t)

i_O I

Ifthe time t appears explicitlyin the system of functions f or fo' then italways

can be transformed to an autonomous system by introducing an auxiliary state

variable that is defined by

kn+l(tc_ = 1 with Xn+l(tc_ = to (8)
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Example

For a space vehicle powered by a throttled engine and flying in the

gravitational field of only one attracting body, the system of equations of the

state variables, i.e., Eq. (1), reduces to

It=V

=--/LR+ u(t) e
- r 3 - Izz --

c

where e is a unit vector in the direction of the thrust, and u(t) is the control

variable belonglng to the range 0 _ u(t) _ K.

For minimizing the fuel between x(t_ an d x(T} with free end time, the

integral functional to be optimized, i.e., Eq. (2), becomes

_T
Xo(T) = _. fo(X(t), u(t) )dr

-tO

with fo = _,_=u(t) c

(9)

(10)

The system of the adjoint variables, i.e., Eq. (3), reduces to

3}o(t) =0 Yl

__(t) = -P--- ), _R'_X E = Y2
r3 -- -3# r5 11 Y3

)'= Y5

Y7(t) =_-(_ (_'e) Y6

(11)
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The maximum principle and the transversality conditions of Eq. (6) become

_=sup_= Yofo+U -V+),'(r/_3R÷u(t)e)-Y7 u(t)=0u6U m -- c

_t

Yo(t) = -1 and Y7(T) = 0

(12)

where fo = u(t)C

From Eq.

u=0 or u=K is defined by

(1), it is obvious that k//_e and that the switching function for

I)'1 Y7 - Yo "_--
S(t)= m /C

when u(t) / K (max)
ffi _- 0 (min)

respectively.

(13)

VARIATIONAL EQUATIONS

In this section, the variational equations of the optimum trajectory of a

space vehicle are derived. The formulation of these equations is required for

the application of the differential correction scheme that is developed in the next

section.

The application of Pontryagin's maximum principle for the solution of

optimal problems yields additional information for the synthesis of optimal

controls. Making use of this principle, the system of E'qb. (1) and (3) may be

rewritten in the following general form.

Io]E 1= (14)
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The variations of this system are obtained by

A_(t) = F(t 5 Ar (t5 + Ah(t)

where the matrix F(t 5 and the vector A_h(t) are given by

F(t)=

.i g(uSJ

(15)

(16)

Transition Matrix

The fundamental solution matrix for the homogeneous part of Eq. (15), i.e.,

_(t) = F(t) _(t)

with initial conditions _(to, t_ = I (unit matrix), is the transition matrix _.(t, to)

of the system. From the properties of the fundamental solution matrix and the

transition matrix _(t, t_, we obtain

t

A_r(t 5 = _(t, to) A_r(t_ + ft ¢(t, r) A_h(_) dr (17 5
o

which is the solution of the non-homogeneous Eq. (15 5.

In the example of the powered space vehicle flying in .the gravitational field

of one attracting body, Eq. (17) reduces to

N

_r_(T) = ¢(T, to) __r(to) + _. ¢(T, tj)__h(tj) At (18 5

j=l
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where t. is the time at which the thrusting program of the optimum nominal trajec-
J

tory with the approximate values of initial conditions r(to) switches "on" or "off"

during the time interval t < t. < T, and A_r(T) gives the deviations of the nominal
o j

end conditions from the desired end conditions, i.e.

_r (T)
i

J

_(T, to)

__ f_ __(_

o)  y(to)

 y(to)

m

Xx(T, to) Xy(T,to)

Yx(T, to) Yy(T'to)

(19)

_h(tj) = lira
(-.0

- __(tj+ E)

Because the boundary conditions of the state variables at the initial time t
O

are given, we have _X(to) - 0, and Eq. (18) becomes (see Fig.

N

__r(T) = _(T, to) _r(to)->_. _(T, tj) 6_ %) Atj

j=l

or

1)

(20)

Atj (21)

where X = X(T, to), and X (j) = X(T, tj) .
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and

From Eq. (21), we get

N

j--1

N

j=l

(2z)

(23)

Thrusting Program

In the formulation of the variational equations of the optimum nominal ,

trajectory, the time variation Atj of the optimum thrusting program has been

included where tj is the time at which the thrust switches "on" or "ofi _' and the

switching function of the nominal trajectory is zero, i.e., S(tj) = 0. The time

variation Atj is calculated from the variation of the switching function _S(tj÷Atj)
for which

S(tj +Atj) + AS(tj + Atj) = 0 (24)

From the linear expansion of Eq. _4) we get

S (tj) Atj _"" 5rSS--Ar--(tj+Atj) (25)

becomes

5S
and _ ___ (tj) = 0, Eq. (25)

_r (26)

Expanding the variation Ar(tj) from Eq. (20), we get

i<j

Ar(tj) =_(tj,t_ __r(t_ -L _(tj'ti) 6--r(ti) _ti

i=1

(27)
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,q(tj) __r(tj)E_(tj't_A--r(t_ - = _(tj'ti) 6_(ti)Atil

and, in terms of the variations A_ (t_, it becomes

= -7-- L._ Xy (tj,to) + 5y(tj) Yy(tj'to)JAy(t_
s(tj) -

+ 1.¢_._ 5S(tj)

S(tj) _x(tj)
i=1

i<j

(t j) 5y(tj) i=1
[Yx(tj,t) _(t i) +Yy(tj,t)6_,(t_)]_i

(28)

(29)

From Eq. (13) for the switching function S(t), we find that

I_,1 YT-Yo -_"
S(t)= m c S(t) = mIX-----_

5SS)__x(tj)= {0' O, O, O, O, O, m21XI}

_y(tj) = '
Y5 Y6

P

ml_l ml_l
,}--, O, O, O, -_-

(30)

DIFFERENTIAL CORRECTION SCHEME

•Correction Scheme

In this section, a differential correction scheme is developed for the im-

provement of the approximate initial values of the adjoint variables so that the

optimum solution of the problem can be found. The variations of the nominal

optimum .trajectory of the space vehicle, calculated for the approximate initial

values of the adjoint variables, have been derived previously.
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Making useof Eqs. (17), we solve for Ar(tc_ if we know the variation

f._r(T) at the terminal time T. In the example of the powered space vehicle we

derived Eqs. (22) and (23) for the variations of __x(T) and Ay(T) caused by the

variations of the adjoint variables _y(tc) at ,the initial time t o and the variations

At. at the time t. of the thrusting program, which corresponds to the optimum
J

nominal trajectory for the approximate adjoint variables.

Free End Time

In the case of free end time T, a variation in the terminal time also is

taken into consideration, and, making use of Eqs. (29), we find that

(31)

mz(T) : [_] ny (to) +_(T) nT (3z)

Separating the seventh row of Eqs. (31) and (32), we get

_.__x(T) = [r] Az (to) +_(T) AT (33)

AyT(T ) : _ Ay(to) + _'7(T) A T

where Eqs. (33) and (34) are of the form

[6 xl]= [6x_] [Txz] + [oxl]E1xl]

[i xl]: [ix'/] [Txl] +[Ixl][Ixl]

respectively, [ r ] represents the first six rows of [r ], and G 7 represents the

seventh row of [G ].

For the solution of the system of Eqs. (33) and (34) for AY(to) and AT from

the deviations A_x(T) and AYT(T ) = 0, we need one more relationship, and this is

obtained from Eq. (12), i.e.

7

_(x, u,_) = X Yj" fj(t) - fo(t) = 0

j=l

(35)
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Taking the variation of 6r_(t) at time to, we get

7 7
t--,

L fj(to) _yj(to) + _ yj(to)Afj(to) -Afo(to)

j =1 j =z

= 0 (36)

Because Afi(to) = 0 and Afo(to) = 0 if the variation of the-switching function

_S(t(_ does not change the sign of S(to), Eq. (36) becomes

7
C
L, fj (to) A yj (to) = 0

j=l

(37)

or

u(to)
v (to)•zxv_(to)+i_(to)•_ I_(to) c Ay 7 (to) = 0 (38)

Thus, combining Eqs. (33), (34), and (38), we get eight equations with eight ,

unknown variations that are given by

0

]

n 7 Y7 (T)

• T

x(to) 00

7

aY(to) ]

(39)

Solving for AY(to) and AT, we find that

i

_7 Y7 (T)

__(to)T o

u

_x(_

0

(40)

Iteration Scheme

For the calculation of the optimum trajectory of a space vehicle, the

differential correction scheme described in this section is applied, and the

variation of the adjoint vector SY(to) at the initialtime t o, as well as the varia-
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tion of the final time AT, are derived to match the desired conditions at the final

time T in space. Making use of the corrected adjoint variables'y 1 (to) --_(tc_ + Ay(t_,

a new optimum nominal trajectory is computed by integrating the system of equations

of the state and adjoint variables, i.e., Eqs. (9) and (11), by making use of Eq. 413)

for the optimum thrusting program as descrR_ed previously. Because the differential

correction scheme has been derived for linear variations of highly nonlinear equations,

it is expected that there still will be a discrepancy between the desired and the new

computed values of the end conditions _xl(T1), where T 1 = T + AT.

In general, successive iterations generate corrections AYk(t _ to the adjoint

variables at time to from A_Xk(T _ such that

k

'i--O

which, in turn, gives end conditions with deviations A_Xk+l(Tk+l) from their de-

sired values, and

k

Tk+ 1 = T + _, AT i (42)

i=0

This iteration scheme converges to the desired end conditions of the state

vector, provided that the deviations are within the linear range. Departure from

the linear range will be indicated when the deviations of the computed nominal end

conditions from the desired end conditions A_Xl(T1) are comparable to or exceed

the deviations A__(T). In this case, each step of the iteration scheme described

above contains a sub-iteration carried out on a parameter7' k introduced as a

factor multiplying the deviations AXk(Tk). Thus

_x k (T_ = )/k _Xk(Tk) (43)

From Z_Xk*(Tk), we obtain the correction Ayk*(tc_, which is added to _k (tc_

for the kth estimate of the adj0int variables at time to. The sub-iteration consists

of the determination ofavalueof 7 k (0<Tk_l) such that the deviations A_Xk+l(Tk+l)

computed from the corrected adjoint variables, i.e.
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k

* Li * k+l(to ) = k(tJ+ (to)= (tj + (to)
i=0

(44)

are comparable to or less than the deviations A A_Xk(Tk). This procedure is continued

until the linear range is reached for which Yk -- 1 and the iteration scheme converges

to the desired end conditions.

It should be noted that the same procedure is followed when parameters other

than the state variables are specified as end conditions. Of course, these para-

meters must be expressible as functions of the state variables.

CONCLUSIONS AND RECOMME NDATIONS

A differential correction has been developed for the improvement of the

approximate values of the adjoint variables so that the optimal solution of the prob-

lems of the calculus of variations is obtained. The mathematical analysis for the

differential correction scheme for the optimum trajectory of a space vehicle with

minimum fuel consumption between fixed boundary conditions has been presented.

The method developed relies on the variations of the nominal optimum trajectory

of the space vehicle calculated for the approximate initial values of the adjoint

variables, which are assumed to be given. Techniques for the calculation of these

approximate values are not considered in this report.

A general transition matrix has been derived for the variations of the ehd

conditions caused by £he variations of the initial values of the adjoint variables,

including the variations of the thrusting program of the nominal optimum trajectory

and the variation of the final time. An iteration scheme also has been discussed

for the convergence of the improved values of the adjoint variables to those of the

optimum problem satisfying the desired end conditions. In"addition, a method for

the case of variations beyond the linear range has been outlined.

This program will be highly useful for the determination of optimum space

missions and for optimum orbit transfer for intercept and rendezvous of space
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vehicles as well as for optimum navigation and guidance of a space vehicle.

Further work in this area is readily suggested. First, techniques should be

developed for the approximate initial values of the adjoint variables that are

used for the optimum nominal trajectory. Second, this correction scheme

could be extended readily to optimum problems with more general types of

end conditions than those considered in this report. Finally, a more general

differential correction scheme is required for the optimum pursuit of a powered

suacecraft, which would involve a statistical-control scheme for the probability

law of a randomly moving point.

APPENDIX

VARIATIONAL PARAMETERS

For the calculation of variations of the optimum space trajectories, there

is a general matrix introduced that relates the variations of the state and adjoint

variables at time t to those at time t o. This matrix, called the general transition

matrix, requires the computation of the partial derivatives of the state and adjoint

variables at two different times, i.e., t and T, and relates their linear vari-o

ations at these times, including the optimum changes of the thrusting program.

When the thrust is "off," the system of equations for the adjoint variables

is "adjoint" to the system of equations for the variations of the state variables,

which, in this case, is homogeneous, and the transition matrix of the state variables

is used for the calculations of the adjoint variables during the coasting interCals

of time, i.e., t.<t<t. In this case, the transition matrix of the stateI I+i "

variables X (ti+I, ti) is found from the corresponding Kepler problem, and itis

expressed in closed form from the solution of this problem.

The variations of the state variables and the values of the adjoint variables

for the coasting interval are given by [3].
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where

and

i)= (ti+rti) i)

y(t)

__(t) T = (xl,x2,x3,x4,Xs,X6)

_(t)T = (yl,Y2,Y3,Y4,Ys,Y6)

(45)

(46)

5-_(ti+l) (47)
_{(ti+i'ti)= B_(ti)

The use of the conventional state variables _x(t), which are position and velocity

vectors _R and 1_ in cartesian coordinates, has the disadvantage that all of their ele-

ments have secular terms that vary rapidly with time. If, instead of the conventional

state variables, other parameters are used as state variables, the resultant matrix

might be simplified considerably. For example, consider the following parameters

and their variations:

Ao_ 2

A_3

A_4

An5

A_ 6

Rotation of R about

Rotation of R about R

Rotation of both R and R about H

Change in cos _,_), keeping v and R constant

Relative change in the semimajor axis _a/a,
keeping R and _/v constant

Relative change in the magnitude of the position

vector (_.r/r), keeping R/r and _/v constant.

The transition matrix corresponding to the above parameters, i.e.

Ae_(t)= ,_(t,to)A__(to) (46)
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_(t, to) =

_ o o o o
V 0 r 0

b

0 0 1

0 0 0 0

5_3 5_3 5_3

_40 _50 _60

_4 _4 _4
0 0 0

_40 _ _50 5c_60

0 0 0 0 1

roVo _z 60 0 0 _
r _50

_6

_60

(49)

where some of the non-zero elements are listed as partials of the orbital para-

meters and are given by Ref. [4 ] as

_3 roy o r v_ ._ [:_c_ _ 90-_,o ,_ , -,_o)÷- (,- I)]r o /_g

r O rv

b_50 r Vo_r ° _ _ _ o/ _'o 40 " "--'--
(51)

(52)

_ _°]
b_40 rv r2v

(53)

_.ro : +_.__3v(t-to)/ 9-__°_-_ [_ 0(_,_o _o_ •.. _, ;}-_ _,0
_so .rv2 v°

(54)
r o

•÷(_-0--_)-,.}(,>o.- ,o-o
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rv2 ' - " + o -

r o-_ (_--_){_-_-0-_)}]_o (55)

_c_6

.vo • r ro roVo _-_t d.!
(56)

(575

The tr_a_sforz_on relati_ the var_tton of the oonventio_ stat_, variable z_T=

___(t) : P(t5 ,__(t) and _,_(t 5 = P(t)-i £x(t) (585

whore

P(t)-

a_d

P(t) -IT:

m

v

0

Hx__
o _-- o o

-z_ x._R -J/--
_2 a

-vH H x R H x R 2a

o -_- _v 7 -_

0 0 --
h2 rv 3 # -

0

(59)

(60)
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The relationship between the transition nmtrix X(t, t_ for the conventional

state variables _x(t) and _ (t, t_ for the above set of parameters __(I;) is given by

X(t, tc_ =P(t) $(t, tc_P(to)-1 and $(t, tc_=P(t)-lx(t, to)P(tc_ (61)

The scalar functions f,g,f, and g are given by

(_mpuo) (SyperboUc)

f= a(coae- i) +I
o

a
f ffiF- (cosh e - i)+ i

o

g = __to)_ e- sin e (62)n g = _t_to) st_ e -0n

f: -a2n sin8 ff-_sinh e

rr 0 rr 0

a
i- _(oos e-l) +i _= -_(ooshe- 1) +i
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SUMMARY

It is desired to find the point-to-point re-entry trajectory for a

space vehicle with an off-set center of gravity which will minimize the

integral of drag squared over time. The magnitude of the roll control

force is used as a control variable. The problem takes the form of a

Lagrange problem in the Calculus of Variations, with the first order

equations of motion of the vehicle as constraint equations. The Euler

characteristic equations are written and a computational procedure

recommended so that trajectories can be generated on a digital computer.

Trajectories so generated satisfy the Euler necessary condition for

stationary values of the given integral but do not necessarily satisfy

the sufficiency conditions of Weierstrass.
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SYMBOLS AND ABBREVIATIONS

G

M

m

gi

r

rM
w

rA

%

SP

CP

SY

CY

SR

CR

Gravitational constant

Mass of the earth

Mass of the vehicle

Constraint equations

Plumbline position vector

Missile-fixed position vector

Position vector in the aerodynamic coordinate system

A rotation about the X axis

A rotation about the Y axis

A rotation about the Z axis

Gimbal angle for pitch

Gimbal angle for yaw

Gimbal angle for roll

Sine _p

Cosine _p

Sine _y

Cosine _y

Sine _r

Cosine _r

Aerodynamic force in the aerodynamic coordinate system

Aerodynamic force with components in the missile-fixed

coordinate system
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Absolute angle of attack

Angle of attack in yaw

Projected cross-sectional area of the vehicle

q Dynamic pressure

f( _ ) A configuration dependent function of

m

KOe Earth' s angular velocity vector

r

VrM

Relative wind vector

Relative wind vector with components in the missile-fixed

system

Position vector of the center of pressure in the missile-

fixed coordinate system

MAM Aerodynamic moment about the center of gravity

_rl = -F_r2Roll control forces

Roll control moment

T Kinetic energy

t time

Vehicle angular velocity vector with components in the

missile system

vii
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T
w

Transpose of

_Rc Position vector of roll jets

Lagrangian multipliers

r

T

T

Y

[o] "

d
[s],.m_

T

T

[A.J D_]EA,,,]
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I. INTRODUCTION

In this paper an attempt is made to treat the optimum re-entry

problem in a dynamically realistic manner. The condition for optimality

"used herein is that the integral ](Drag)2dt be a minimum for fixed

end-point trajectories. The six degrees of freedom, rigid body

constraints are used in the form of first order differential equations

of motion. It is assumed that the attractive force due to Earth and

atmospheric drag are the only forces influencing the vehicle's

motion. A re-entry vehicle with an off-set center of gravity is

used so that maneuvering can be accomplished by properly placed roll

jets. The performance optimization analysis which results from the

statement of the problem is a Lagrange problem in the classical

Calculus of Variations with fixed end points.



89

II. STAT_ OF THE PROBLEM

From an initialpoint above the earth's surface, a space vehicle

is assumed to re-enter the atmosphere under the influence of gravi-

tational attraction due to the earth and atmospheric drag. The per-

formance optimization study herein presented is predicated on the

assumption that an automatic control system is desired to satisfy

the following criteria:

I. Maneuvering capability for a point landing.

2. Minimization of the accumulated physiological strain

on a human crew.

The exact mathematical statement of the latter criterion as used

in this paper will be the minimization over the trajectory of the

integral _(Brag)2dt. The term "drag" is here used to denote the

total aerodynamic force acting on the vehicle. The basic performance

problem so formulated is the fixed end point variational problem of

Lagrange, where the integral _(Brag)2dt is to be minimized subject

to n differential side conditions gi = O (i = l, ..., n) and boundary

conditions fk = O (k = l, ..., 2m + 2), where m is the number of state

variables. The constraint equations gi = O (i = l, ..., 12) will be

th_ first order equations of motion of the vehicle written in three

degrees of translational freedom and three degrees of angular freedom

in the gimbal angles for pitch, yaw, and roll. The boundary condi-

tions fk = O (k = i, 2, ..., 24) will be the initial and terminal

values of position, velocity, gimbal angles, and angular rates. These

boundary conditions seem realistic for the performance problem if

adaptive control is to be used. The magnitude of the roll jet force
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will appear as a control variable and is left unspecified at the

end-points. The problem is formulated subject to the following

additional assumptions:

1. The massof the vehicle is an invariant with respect to

time.

2. The vehicle center of gravity is an invariant.

3. The only forces acting on the vehicle are the gravi-

tational force and drag.

2. The vehicle has an off-set center of gravity so that

maneuvering can be accomplished solely by roll jets,

properly placed so as to create a pure couple.

5. The earth is spherical and the inverse gravity law

is valid. F = -GEm
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III. COORDINATE SYSTEMS

Two coordinate systems will be used, one earth-centered,

space-fixed Cartesian set and one Cartesian set fixed in the

vehicle.

PLUMBLINE SYSTEM

The plumbline system is a space-fixed Cartesian system and

is defined at the initial time of re-ontry by taking the origin

at the center of the earth with the Y axis parallel to the gravity

gradient at some fixed reference site on the earth's surface. The

X axis is parallel to some earth-fixed azimuth at the reference point.

The Z axis is taken so as to f_m a right hand set.

MISSILE SYSTEM

The missile system is defined by having its origin at the center

of gravity of the vehicle and its YM axis parallel to the longitudinal

axis of the vehicle. The XM and ZM axes are taken so as to form a

right hand Cartesian set. The coordinate systems are illustrated in

Figure 1.

GIMBAL SYSTEM

As the vehicle moves in flight, the two coordinate systems are

related through Eulerian angles, which are measured by the gimbal

system. Starting with the space-fixed system, three successive
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FIGURE i. COORDINATE SYSTEM_5
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rotations of coordinate axes are defined in terms of the Eulerian

angles so that a transformation relating the two Cartesian sets can

be written. Specifically, the attitude of the missile in flight

is defined by first rotating about the Z axis by _p then around the

new intermediate X axis by _@y, and finally around the YM axis by

" _r" So that

or

(2)

L 1o cN -s_:c_ o _

_CRCP + SPSYSR CRSP-SRSYCP SRCY 1CRCY-SRSP-CRSYCP
-SRCP + CRSYSP

Where, for example, CR is used to denote Cosine _r" At the time

the gimbal system is actuated, the transformation between the two

systems is taken as the identity transformation. The gimbal angles

are illustrated in Figure 2.
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IV. BASIC MECHANICS

Before the variational problem can be formulated, a mathematical

model for the basic mechanics mmst be deduced from the previousl_

stated physical assumptions.

FORCES

Aerodynamic Force

The aerodynamics used is essentially that given by Miner (6)

except winds have been ignored. An aerodynamic force, FA, is assumed

aerodynamic force is found in terms of two consecutive rotations of

coordinate axes starting with the missile system and forming a new

Cartesian system denoted by rA. The rotations are made so that the

aerodynamic force is parallel to the new YA axis. The rotations are

defined as follows, turning from the missile system:

I. Rotate about the YM axis such that the XM axis is brought

to lie in the plane which contains the YM axis and the

relative velocity vector; denote the angle turned through

as O_y-

2. Rotate about the new ZA axis to bring the YM axis to lie

along the relative velocity vector; denote this angle as

, the absolute angle of attack.

So that
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Now consider the magnitude of the aerodynamic force to be given by

IFAI = Aqf( _); where f(_) is determined by the vehicle config-

uration. The aerodynamic force in the missile system is then given

by:

(5)

f CoOS_y 0

"FA_ " [-- _'y_ 2 [_]3 _a I L_Si n _y ol

-AqSi__ Cos_ f(_) -]
-Ag Cos_. f(_ )J dAq Sin_ Sin _y f(

Sinai I-C°sO_ Sin_ ilocos Lg in_ c°s_o FA

From the definitions of

now deduced: 2
Vr_x

(8) cos o9_ if
"

(7) - LAoJ

and in the missile system

VrMy
VrMZ I

bz and the following relations are

Vr_ < o cos_y ¢ o

VrM X >0 COS_y >0

The equations of motion for the vehicle will be written in the plumb-

line system, since this system is space-fixed and assumed to be a

primary inertial system. It will be assumed that the atmosphere moves

with the earth so that there is an air mass movement relative to the

plumbline system defined by (_ x _e ), where d e is the earth's

angular velocity vector written in the plumbline system. The rela-

tive velocity vector is then given by

(5) Vr r
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(9) sin% - • _l -_2 % if v_m <o sin _ > o
-- VrMZ >0 Sin O(yy < 0

2

vrMy
(I0) Cos_ = ..... if V...__( 0 Cos0_ < 0

(11) S_n_ - ÷ _i - C_2a where 0 -__ _- 180°

Reference to Figure 3 may be convenient at this point.

Gravitational Force

Since the earth is assumed to be spherical, frum Newton's Law

of Un_2;ersal Gravitation, there is an attractive force acting at the

center of gravity of the vehicle given by:

(12) F., - G_

MOMENTS

Aerodynamic Moment

The aerodynamic force acting at the center of pressure causes

a moment about the center of gravity of (_Cp X FAM)where XMCp

is the position vector of the center of pressure in the missile

system.

LZ--CPJ[XMCp_ IAq f(tY") Sin (% C°s __I
(13) MAM = _'M ,I X -Aq f(0&) Cos 0(.

M Aq f(_) Sin_ Sin
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FIGURE 3. AERODYNAHIC FORCE SYSTEM
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Roll Control Moment

The roll jets are placed in the positions shown in Figure 4,

so that in the missile system

-,F_1 , located at

and

, located at I_ZRCI

so that the moment about the center of gravity due to the roll jets

is gi_n by

i2 ZRCX, _

The total m_aent about the center of gravity in the missile system

is then the sum of the aerodynamic and roll control moments.

TRANSLATIONAL MOTION

Since it has been assumed that the only forces acting on the

vehicle are the attractive force due to Earth and the atmospheric drag,

the equation of motion for the translation of the vehicle center of

gravity takes the following form:

I_I3 .
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FIGURE 4. ROLL CONTROL FORCE SYSTEM
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ROTATIONAL Dlq__I CS

In general, a rigid body in three-dimensional space has six

degrees of freedom since six coordinates are required to fix its

position relative to a given space-fixed set of axes. In this

analysis, the six degrees of freedom are the plumbline coordinates

of the vehicle center of gravity and the three gimbal angles which

fix the missile system axes with respect to the plumbline axes.

Clasle's theorem states that it is possible to split the problem

of rigid body motion into two separate phases, one concerned Solely

with the translation_l motion of the bod_, the other, with its rota-

tional motion. Since an expression has previbusly been written for

the translational motion of the vehicle center of gravity, express-

ions are now needed to describe the rotational motion of the vehicle

about its center of gravity. These equations are determined from

energy considerations.

A transformation can be carried out from a given Cartesian co-

ordinate system to another by means of three successive rotations of

coordinate axes. In this analysis, starting with the plumbline

system and transforming to the missile system, these angles of rota-

tion have been defined to be the gimbal angles for pitch, yaW, and

roll. These gimbal angles are ideal generalized coordinates for

setting up the rotational motion of rigid bodies using the Lagrangian

formulation of mechanics. For generalized coordinates of angular

character, such as the gimbal angles, the Lagrangian form becomes
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(16) d [___LT_ - aT = M_i

dt _ti j _ _i

where T is the kinetic energy and M _i is the moment causing the

_i rotation. The subscript i takes the values pitch, yaw, and

roll. Since an off-set center of gravity has been assumed, all six

components of the inertia tensor are taken as non-zero. The express-

ion for kinetic energy takes the following form:

2

__x _y - 2_x_Z - 2_z _y ooz

or using matrix notation

(17)

" yz IZ

where [/_ is the inertia tensor for motion about the missile axes,

-- T
¢0 is the missile-fixed angular velocity vector and _ is the

transpose of_ . By carrying out the indicated differentiation

on the above expressions for kinetic energy, the Lagrangian equa-

tions take the following form:

dt k _ _i ) _i - dt 2_i

E

The 60 vector in the missile system is obtained by establishing

the angular velocity components in the missile system due to the trans-
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@

formation of each of the vectors , , and _r" These vectors

are in the directions of the axes of rotation. The gimbal system used

in this analysis measures pitch, yaw, and roll in order turning from

@

the space-fixed system. Therefore, _r is already in the missile

system, whereas, _y must be rotated through the roll angle and _p

must be rotated first through the yaw angle and then through the

roll angle. The _ vector in the missile system is then written

_0 ''] o o= + 0 CY Y+ 0 i i

o cN _ R o cRj _ C__l _ .

-SR _

L_rJ

and
_T T

-T [A_](2o) _ -

Using these expressions in equation ( 18 ) the Lagrangian equations

in pitch, yaw, and roll can be written as follows in vector form:

(21)

where

-_T

- TB.

and B
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o@

dt

In developing B, it will be noted that

l

OoC 1
RCY 0 -SRCY1

Also, in the development the following additional notation is used:
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V. FIRST ORDER EQUATIONS OF MOTION

In light of the preceding discussion the first order equations

of motion for the vehicle can readily be written in vector form by

_
defining the velocity, V = X = [u v w] T , and the angular

velocity vector, _-_ = [_p _ _r] T. The equations

are written assuming the validity of Newton's second postulate in

the plumbline system.

(22) _ - V = 0

-£

(23) v • OM_ - [AD]z

- o

These vector equations can be written as twelve scalar equations as

follows:

(26) gl = x - u = 0

(2?) z2 = _ - v - o

(28) g3 = _ -w = 0

(29) g_ = _ .GMx(x 2*_2 ._.2 )Z

-Aqf(0_) .[ CRCp + SRSYSp)(-Sin _ Cos 0ty) + CYSpCosOf, + (-SRCp +CRSYSp)
m

(Sin_ " (Y.y)_,, " 0
3

(3o) g5 = ¢' * Gm_(_. x2 . z2)"_"

•A_.qf.(tX )_,. (C_p-s_xcp)(SinmCos_). cxCpCos_. (s_.c_xcp)
m

(Sink Sin (_) _ - 0J
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@

(31) g6 = w +

+Aqf( _ ){ SaC_ SZN_
Ill

_z {x2 . y2 . z2)

Cos _y + SY Cos _ - CRCY Sin_ Sin _y}
= 0

(32) g_ - _p - _p . o

@

@

(34) gg" Tr - T_ - o

(35) glO= _p" Aqf(._) { (CIISRCY+CI2CR)(YEcpSin_ Sin _y+ZMc P

co_ _ ) - (cnsY-cz3)(zMceSin_ cos %* xMcP sin_ si_ %)

+(CIICRCY-CI2SR)(-XMcP Cos _+ YMCP Sin _ Cos _y) } -CIISY-CIs)(2PrZRC)

+ (CllSll+Cl2S21+Cl3S31)_p+(CllS12+c12822+C13832)_+(CllS13+C12823

+c13833) _r + (CIITII+CI2T21+CI3T31)_p ÷ (CIITIa+CI2T22+CI3T32)_y

+ (CllT13+C12T23+C13T33) _r - C12{_p (Mll _p *M12 _Y *M13 _r) + _Y (M21

 y%2 ÷M_/y 23 _r )+ _(_I *p+M32 l_/y+M33 *r )} "C13{_p(Nll_+N12 TY

+N13 _r ) + _y(N21 _p+N22 _y+N23 _r)+ _r(N31 _p+N32 _y+N33 _r))- 0

• {(36) gn = _y - Aqf(OL) (C21SRCY+C22CR)(YMcpSin0C Sin _+ZRc P

Cos _ ) - (C21SY-C23)(ZMcpSin_Cos _+ XMcpSin_ Sin _)

+(C21CRCY-C22SR) (-XMcpCos Og+ YMcpSin _ Cos _) } -(C218Y-C23) (2FrZRC)

+ (c21sn+c22s21+%3s31)_p+(c21s12_22s22*%3s32)_y+(c21sz3+c22%3

+C23833) _r + (C21TII+C22T21+C23T31) _P +(C21TI2+C22T22+C23T32) _Y

+(C21TI3+C22T23+C23T33 ) _r -C23 { Tp(Mll _+MI2 _y+Nl3 _r )+ _y(_l

,p+M22 _y'M23 _r ) + *r(M31 _p+M32 _y+M33 _r ) } "C23 #{_p(N11 _p+N12 t_]y

+N13 _r)+ _y(N21 _p+N22 _y+N_3 _r)+ _r(N31 _p+N32 Vy+N33 _r )} = 0
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(37) gl2 = _r - Aqf( _ ) (C31SRCY+C32CR)(YMcpSin_ Sin _y

.zMcpcos_ ) - (c31sY-c33)(_c_in_cos _. _cpsin_ sin _)

÷(031cRc_-c32sR)(-x_pCos_ ÷ _.cpSin_as _)}- (C31S_-C33)(2FrZ_)

+ (031Sn+C32S21_33S31)Tp+(c31s_32s22+c33s32)Ty*(c31s13_32s23

+c33s33)Tr + (C31Tn+C32T21+C33T31)Tp +(C31_+C_+C_ )_

+(C31TI3+C32T23+C33T33 ) _r "C32_p(Mll _p÷M12_ _y+M13 _r)+ _Y(_21_p

_r ) + _r(M31_p+M32 _y+M33k_r)_ "C33_p(NII _p+Nl2 _y

+N13 _r ) + _y(N21 _p+N22 Ty+N23 _r ) + _r(N31 7p+N32 7y+N33 _r)) - O
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VI. FORMULATION OF THE VARIATIONAL PROBLEM

As previously stated, it is desired to find stationary values

of the integral f(Drag) 2 dt between fixed end points subject to

the first order equations of motion as constraints. Using the aero-

dynamic force previously derived, the integral becomes

(38) _(FAM" FAM )dt =_q2f2(_) (Sin_Cos2_y+COs_+Sin_Sin2_y)dt

The concept of the Lagrangian multiplier is used to handle the con-

straint equations in the usual way; thus f' is defined as follows:

f' = f + _igi = FAM " FAM + _igi (i = I, ...12)

or in vector form

(39) f, . •
m m

T
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The Euler characteristic equations are given by

(40) _ f__i'- d__(_ q -
_q dt _#q ;

(X,Y,Z,U,V,W, _p, _y,%, _p,Ty,Tr,Fr)

The characteristic equations for the respective variables are given

as equations (41) through (53) below:

2

GM _' + 3GM I_I ,_I_I

(_)_- #_ ÷ i4-_ _ a_
m

=?x

II

m _x
Td#___)-d (i_-#_)

(42) #AM • #_ + _'4.(GM o_ ÷ :r_ i_l2 _l r

- A'_I]Td) FAM)+-- _I'0 "(- [C -][A@I T _) %T ) = d-td(,_i " _--#-)
m _y dy

--A_] T _FAM ) + _i0 "(" [C] [Ar.._]T _ )= d (_I " _-# )

m ,9 z _z d--_ _'_

_gU _U m _gu

+ _o.(-[c][_]T #_T)- d___( _ . #_)
_u dt _

_v #v m

' _'1° " (- I-c-I[A_]T- _T) "dd-_(_" _)
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III

(53)Ao-(-[°][A-3 _ A_ ) _ o
Fr
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VII. COMPUTATIONAL PROCEDURE

The desired trajectory then is one which satisfies the original

twelve first order equations of motion and the thirteen Euler charac-

teristic equations• The equations are such that a solution in closed

form seems improbable to obtain• However, if the Runge-Kutta method

is used as a basic numerical integration scheme, the system can be

programmed for the digital computer• Starting with initial values for

the state variables and the Lagrangian multipliers, trajectories can

be generated that satisfy the system of governing equations to a high

degree of accuracy• Since the equations involved are long and hard to

work with, it is convenient to outline a computational scheme from the

system of equations written in functional form. The system can be

written as follows, where the longer equations are not written out

but represented in functional notation:

(5h)

(55)

(56)

(5?)

(58)

(59)

(6o)

(61)

(62)

(63)

- U = 0

@

V ° $' $)

_ ,(x,y,z,u,v,w,_, _p,_y)
@

"b'% o

_y - _y = 0

_'r - ?r " 0
@

_)p =_p (x,Y,Z,U,V,W, _p, _r, t_y, t_p, _r, _)y, Fr )
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(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(72)

(75)

(76)

't'y='Vy(x'y' z'u'v'w' 'fp' %, %, _, ?r, ey, Fr)

;_ (x,y,z,u, v,w, %, 'fr,%, ,_,;%,,_,,,_io'An,A12)

= _2 (x,y, z, u, v,.,

X_--_b(x,y,z,_,v,w, %, %, %, X4,Is,R6,;_o,;_n,),12)

_4 --I_(x,y, z,u, v, w,

111'_2)

_p, 4'_,_'y,Az,_, As' 16' ,ho,

= 5 (x, y, z, u, v, w,

_11'X12)

?p'?_'?y'_' L, Xs,_6,_zo,

_6 : _6 (x, z, z, u, v, w, ?p, ?r' ?z' 13' )_I_,,_5' X6' Iio,

_ii' I_12)

A7--_7 (x, y, z, u,_,., _f_,%, _,y,;b.,_, _s. _o, ,hi, Az2)

A8: A8(_, z, z,u,v,.,%, yp, ?z' _' ,15,16' ,I_o,,In,

;b ° A_(_, y, z, =, v,., 9_,%, _, A_,;%,,%,,11o,An,

,11_' fp'?z'_'_' F )

;h_:;b_(_8,_1o,In, Az_,% ?y,fp,q+'_)
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(78) f( _lO, _n, _z2' %' _) = o

Before integration of the system forward through time can be

accomplished, an expression must be found for Fr in terms of the state

variables• Therefore, the following analytical steps must be taken

to get the system of equations in proper form to integrate:

i. Solve (78) for _i0' obtaining _i0 = _i0 ( _ii' _12' _y' _r )

2. Differentiate the expression for _lO with respect to time,
@ • •

obtaining _i0 = _iO ( _11, _12' _y' _r, _i' _12' _' _r )

@ Substitute in the above expression the values of _ii and _12

from equations (76) and (77), obtaining

_o = _o(&, 19,_lO,_n,I_2,_y,_, % _, _)

o Differentiate this expression for _i0' finding an expression

for _i0"

19' _i0' /_ii' /_12' N' _' _r)

@ Substitute into the above expression the respective values

for _' _9' _i0' _i' _12' _' _ and Tr from equations

(73), (74), (75), (76), (77), (63), (64), and (65), obtaining

the following:
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(79) "_o" _zo(;_, ;_5';_' &' &' ;b' &o' ;_n' ;_z2'_' y' ", _'

v,,,, %' _'y'%'Ib'_'y' _' Fr)

6. Differentiate equation (75) with t_e, obtaining

.@

"_o " ),_o(.17' ,t_o'_" _12,_'_,_, _,, _, _-,
• • @ • •

,hi, _2, _p, _'y, %)

. Substitute in the above expression the respective values of

• • • • • • •

47' _i0' _ii' _2' _p' $ and -_r from equations (72),

(75), (76), (77), (63), (64), and (65), obtaining the follow-

ing:

_8o_"_o"_o_I_, ;15,&, ;tT,&, _9,,,11o,,,ln,A2,'f',.,_y,'fp,

_r'?y'_p" x' Y' z' u' v' w' Fr)

Equate the two expressions for "_iO given as equations (79)8.

and (80) and solve for F .
r

(81) F
r : F ( ;_, As'A6,/17',18,_9';_zo,;in' _2, I',' ?y' ?p'

9r' %' %' *' y' z, u, v, ,,)

o Now that an expression for Fr has been obtained in terms of

the state variables, the original system of equations can be

simplified by elimination of one of the Lagrangian multipliers•

lO. Use the expressions for_lOand _i0 from (78) to eliminate

_i0 from equations (54) through (77) and (81).
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ii. Equation (75) now becomes a relation between _ll and 12"

•Using this equation and the expressions for All and 12

given by equations (76) and (77), new expressions are ob-

tained for 411 and 2 as follows:
@ •

(82)_ll_ &1 (XT,_8,19,&2,_y,_r,_, Tr'Tp)"

A computational procedure can now be given as follows:

(a) Assume initial values for _i' 42' _3' _4' _5' _'

_' _8'_9'_lO'_n' _2' x,y,z,_,w. ?p,?y,

Tr, _p, _ay, and ?r"

(b)

(c)

Calculate an initial value for F
r

Calculate: u from (57)

v from (58)

w from (59)

Tp from (63)

_y from (64)

% from (65/

_I from (66)
6

from (67)

A3 from (68)
@

_ from (69)

_5 from (70)
@

from (71)
@

_7 from (72)

from (81).
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@

from (73)

@

_9 from (74)

_11 from (82)

@

A12 from (83),

(d) Integrate the following expressions twice for values

at the n + 1 time step:

Equation (57) for u and x

Equation (58) for v and y

Equation (59) for w and z

Equation (63) for _p and Wp

Equation (6h) for t_y and _y

Equation (65) for _r and _r

(e) Integrate the following equations once for values at

the n + i time step:

Equation (66) for _i

Equation (67) for _2

Equation (68) for _3

Equation (69) for lh

Equation (70) for 15

Equation (71) for 46

Equation (72) for A7

Equation (73) for 18

Equation (7h) for 49

Equation (82) for 411

Equation (83) for _12
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(f) Repeat the process starting with n + 1

values.
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Vlll. CONCLUSIONS

The problem presented in this paper is similar to other vehicle

performance optimization studies that have been published recently

with the following exceptions:

I. The full six-degrees of freedom, rigid body constraint equations

are used. In most of the available literature either the

rotational equations of motion have been ignored entirely or

else the assumption is made that the dynamical motion of the

attitude loop can be replaced by its instantaneous steady

state solution.

2. The vehicle used is assumed to have an off-set center of gravity

so that maneuvering is possible using roll control only.

3. The magnitude of the roll control force is used as a control

variable. In most of the previous work one or more of the

gimbal angles have been used as control variables.

It is not known by this investigator whether hardware can be designed

to give the F specified by this analysis in an actualy flight. However,
r

the problem formulation does show that F appears to be the "natural"
r

control variable when the vehicle is treated as a rigid body with the

full six-degrees of freedom. F always appears linearly and computational
r

problems are not nearly as bad as might have been expected if the control

had appeared in the constraint equations in a more complicated manner.

The trajectories generated from the system of equations derived herein

satisfy the original constraint equations as well as the Euler characteristic

equations. However, satisfaction of the Euler equations is a necessary

but not sufficient condition for a minimum. In order to insure that a

trajectory gives a minimum value to the given integral, the Legendre

and Jacobi conditions must be satisfied.
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7TAJIET0_IB WITH _TAlrr MOJMAL r0El

ST_I'II0 _ A CXI_n.AI ODIT

|Ichard I. Auelmenn

Aarouutronlc. Memport Beach. Callfornla

The totality of motions for • particle initially in a clrcular

Eoplar orbit end acted upon by a constant. In-plane normal force is deter-

ainod. The orbits lle in a tin8 bounded by two circles, the first with

radius equal to the radius of the initial Kepler orbit and the second with

radius dependent on the normal force. The second circle lies outside the

first circle when the normal force Is outward and lies inside when the nor-

real force is inward. The radius of the second circle cannot exceed twice

the radius of the first circle and is reached only when the norual force Is

0.230 times the 8ravity force at the initial radius. The point of central

attraction is roached only when the normal force is 2.809 times the gravity

force at the initial radius. The orbit path oscillates periodically between

the two circles. However. the orbits are not in general periodic since they

do not close. When the maSnltude of the normal force is small, the orbits

are direct, while whnn the force is larse, the orbits are direct near the

first circle and retrosrade near the second circle.
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l_nCroduct oq

A particle i8 moviq in a circular F_pler orbit vhon a constant

force is applied perpendicular to the inc_mtanoous velocity vector and in

the plane of motion. What is the reaultiu$ motion of the particle?

This problem with the applied force in the normal direction end

three other closely related problass with tim applied force in the radLale

circumferentinl and tan6ontial directions have received considerable attcu-

t/on durinM the past tcu years. Of the four problIas only the radial case

has been solved in terms of tabulatJl intMlral8 (elliptic int_rels of the

first, second and third kinds). Next to the radial case. the normal case

appears to be the easiest to analyze. In spite of this fact. the motion

with normal force has not been solved in the sense that Copeland I (with

corrections by Karronber8 2 and Au $) has solved the radial case.

The possibility of reducing the normal case to quadrature8 was

4
revealed by _Lriquaz. The co_leta solution i8 developed in this paper

for the entire ra_o o£ normal force. Since the applied force is perpen-

dicuLar to the velocity, the en@rjy is conserved. Consequently. the s_i-

major axis of the instantaneous F_pl_r ellipse (the path which would he

traced by the particle if the normal force were removed) is equal to the

radius of the initial circular orbit. The particle can never move farther

than twice the radius of the initial orbit frca the point of central attrac-

tion.

The Im@rEy inte6ral may be used to reduce the fourth order system

of equations, which describe the motion, by two orders. A complete reduc-

tion to quadraturea is possible when the problem is formulated in plans
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polar coordinates but. unlike in the radial case0 the quadratures are not

tabulated tntearals. However_ even vtthout evaluatin8 the quadratures0

the totslit7 of motions can be determined. The first step in this direc-

tion is to determine the ane_lar momentum as an explicit function of the

distance from the point of central attraction.

_eductton to Q_sdrat_re!

Let 0 be the point of central attraction and P be the particle.

The constant normal force f (divided by the mass of P) is positive in the

direction shown In FtS. I. The ankle between the radlal direction and the

Inst_sntaneous velocity vector v is _. The unle of mass is selected so that

the unlversal constant of gravitation Is unity. The enersy and angular

momentum are stven by

respectively.

by

1 2._ h.r2_
Km_'V r *

I is a constant but h is not. Its time derivative is slven

- - fr cos - frtlv

Using the energy Inteqlral to eliminate v. the differential form

dh - - fr (K + dr

is obtained. Inteqjratlon in the case when E is nesatlve (corresponding to

a Kepler ellipse) prw¢ldns

where c is the consent of £ntesration.
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The follo_d.sqB a_lysts Is IcM_s_ on the coe'_dition that the initial

Kepler orbit is circular with radius r O. I and the initial value for h are

Siven by

s - t_ ho ro_
" 2r 0 t

With the nondtmmsioual para_tecs

x - r/r 0 , C(- frO2

the constant of infestation becomes

and

+-,o'

l¢41ore

(t - OCu)h'r 0

U(X)- 2 + _'-2 5- (x+ 3)(2x- x2)lJ - 3 tan "1 (_c " 1)_

U is /masinary when x > 2. The reason is that the seal-an Jot axis of the

instantaneous Kepler ellipse would exceed r 0 which is /mpossible since euersy

is conserved. The critical values for U are

u(o)-2-_- _-o.3_

u(l) - 0

u(2) - 2 + 377" _ 4._
4

U is posttiva for x > I and nesative for x < 1.

Having determined h as an explicit function of x it is possible to

obtain the time in quadrature. The ener_ equation may be written as

(1)
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Th4 nondt.me_Lo_l foru

I& _) - -_ o -_u) 2" r " r 0 r 2

(_)"_["; <'_+'I
is obtained after muttiplyin8 by r 0 and replacl_ t by _- not where

n0 - r0"3/2 is the mun notion along the instantaneous Kep1_r etllpse.

The t/ms quadrature

T-f xI2x- x2- (I-(_U)21"_dx+ const.ant
L

is &natolc_s to the _tat equation for tha Eapler problm.

The dlffGrential equation for the orbit

- I
ts obtained from (2) lqv the operstLon

(l - _u)

vhich follows frcl the defLn£tt_m h - r20.

roduc£ble to qusdraturet

The orbit equation ls also

dx ÷ constant

(2)

(3)

(4)

(5)

(6)
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The qusdratures (3) and (6) appear to be intractable. Nevertheless

a complete qualltatLve description of the motion can be obtained without carry-

ins out the Intesratton.

l_e ,a.q!on.of .Hotlon

Prom Sq. (2) the motion is /msSLuery if

f(p)- - (I - l) 2 +

is nesatlve. A necessary (tho,_h not sufflclmlt) condition for the motion to

be real is that _U be positive. An examination of the slsn of U shows that.

if the normal force is directed initially outward (inward). the trajectory

wlll never move interior (exterior) to the Initlat circular orbit.

The question arises whether or not f(x) vanishes at any other value

x = a besides I. Certainly a would depend on _. The two roots for _ which

satisfy *.he e_at!_ f(x) - 0 are

from which

I [I+_ (2x-x2)_ 1_(x) - u

(_(1) = + oo

0((2)- 2+

_- 2.8O9

_0.230

_)

The values for _ vhlch satisfy [q. (7) are shown as functions of x in F/8. 2.

The solid curve in ]Fig. 2 occurs when the minus slju is taken In Eq. (7). whilo

the two dashed curves occur when the plus sLsu is used. The value for x aloes

these curves is denoted by a. ,or any 81van value of _ the function f(x) is
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positlve and the motion is real in the resion between x - I and x - a. The

exterior reelons are inaccessible and are so labeled in Fig. 2.

It 18 significant that a unique value _(0) is required to reach

the origin x = 0 end that a second unique value _(2) Is required to reach

the outer limit x- 2. Indeed it is losical ¢o expect the motion to be

qualltatlvely different In the reslons: _ _ _(0), _(0) _ C_ _ O,

0 <_<_(2) and C_>_(2).

_lltatlve _sc.rlpt.lon of thq Notion

Considerable information can be obtained by examinln8 Kq. (2):

l(x) has the followln8 properties:

I) It is continuous.

2) It is zero at x - I and x - a. The only exception occurs

wh_ a - O.

It is positive in the reslou between x - I and x - a.

3) x(T) - x(-T) when the origin T- 0 is taken at x- 1 or

Xm 8.

4) x(_) is periodic wtth period 21(. that is, x(_) - x( T + 2K).

3)

4) dR/dx does not vanish at x - 1 and x = a.

Consequently the trajectory x - x(T) has the followln8 characteristics:

1) x(_) 1lea between x - I and x - a for all values of _.

2) dx/d_ only vanishes at x - I and x- a. However_ at a - 0

the derivative does not exist.
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The trajectories have the forms shown in Fig. 3. It remains to establish

the forms for the orbits, x-x(O).

The direction of motion alon8 the boundary x - 1 is direct. In

fact dS/dT - 1. The direction of motion alon8 the boundary x - a can be

established frmt Eq. (5) which provides:

dG/d T > 0 for (_(0) _ (_ < 5(2)

dG/dT <0 for _5(0) and _=-_(2)

d@/dT - 0 at (_ = (_(2)

d@/dT - + o_ as (_--_ O_(0) from the positive side

dO/dT - -0<3 as _--_(0) from the negative side

rtu q_l_uu_klUt_lt._.vtt V. nq, % y DUUWlt _ltlt_lt. VattJL_tlla_ at X a_ 0 ai[_ _ -- as

except at a = 2 where dx/dO does not exist.

A complete picture (Fig. A) of the orbits can now be formed, x is

periodic in T and O. however, the orbits themselves are not in general perl-

odic since they do not close. Indeed the only periodic orbits which do exist

are £sotated. The s/Sn of dO/d_ determines whether the motion is direct or

retrograde. For (_ = 5(2) the orbits have cusps at the outer boundary and

for _- 5(0) the orbits pass through O.
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ABSTRACT

Mathematical formulations of the general--inclined orbits and free end
points--optimum two-impulse orbital transfer problem lead to expressions
which, except for special cases, are analytically intractable. Numerical
techniques were developed and used to study optimum transfer modes--many
orbit pairs yield four useful relative optima. A parameter space was
adopted to represent the impulse function; that is, impulse is a function of
take-off point, arrival point, and transfer orbit semi-latus rectum. This
abstraction allowed visualization and detailed examination of surfaces of
constant impulse--thus revealing the structure of the impulse function. As
a result of this study, one may predict the gross properties of "impulse
function spaces" and consequently determine the optimum two-impulse
orbital transfer circumstances for any pair of elliptical orbits. The entire
procedure of impulse optimization, requiring less than one minute of IBM
7090 time, is accomplished for free end points; i.e., impulse is minimized
with respect to take-off _I arrival-_+_iJ_ ..... , as _v _II _S transfer orbit geom-

etry. The method is easily extended to computation of time constraints for

two-impulse rendezvous. An approximation to optimum two-impulse

rendezvous when time constraints are specified is also explored.
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I. INTRODUCTION

Success of a variety of space missions depends ultimately upon an

ability to maneuver in orbit. The high fuel requirements usually associated

with orbit-changing maneuvers make it essential that optimum orbital

transfer modes be investigated--optimum in the sense of minimum fuel

requirements. While these modes might not be employed in the actual

mission, they do represent lower bounds against which vehicle design com-

promises may be measured.

This paper concerns optimum two-impulse orbital transfer and

rendezvous between any pair of unperturbed elliptical orbits. The objective

of the orbital transfer maneuver is to transform the five orbital elements,

p, e, 00, i, _2 of an initial orbit to match corresponding elements of a final

orbit. This is accomplished by instantaneous velocity changes (impulses)

which may be applied at arbitrary points on the initial and final orbits.

Impulse optimization is accomplished for free end _points; i.e., impulse is

minimized with respect to _'-_._-_ and _-_-_I.........pn_,_ts, as well as transfer

orbit geometry. The term rendezvous is used to imply an additional

constraint to the two-impulse orbital transfer process--that of physically

meeting a vehicle in the final orbit.

Little analytic information is known about the optimum orbital transfer

when end points are unspecified. Like many problems of celestial mechan-

ics, the formulation is straightforward and, except for special cases, the

equations are analytically intractable. Thus, for the general problems, one

accepts simplifications in the mathematical model or utilizes numerical

technique s.

Numerical methods were employed to allow visualization of an

"impulse function space"--a geometrical abstraction of the impulse function.

This technique allowed concise graphical presentation of all optimum

impulse information concerning any pair of elliptical orbits. As a result,

it was possible to understand the nature and structure of the entire impulse

function.

II. TWO-IMPULSE ORBITAL TRANSFER FORMULATION

This study involves a two-impulse transfer process between an initial

orbit with elements o , el, _ , i , and a final orbit with elements p_, e_i I I 1 _ 2'

0_Z (Fig. I). The for_nulation_assumes Keplerian orbits and results from
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choosing the final orbit as the reference plane (i2 = 0). iI is the relative

inclination of the two orbit planes (cos iI = _I_i . _W2, where W I and W 2

are unit vectors directed along the angular momentum vectors of the initial

and final orbits). For coplanar orbits the reference direction (_N) is arbi-

trary, but for inclined orbits N is defined as the line of intersection of the

two orbit planes (N = _W2 x W_1 /[ l__3 x W_ 1 I )"

For the general case, there is a three parameter family of transfer

orbits joining any two specific orbits. The objective of this study was to

select transfer orbits which minimized the sum of the two velocity incre-

ments required to perform the transfer. Optimization was accomplished

by numerical means---a fact that has an important bearing on the choice of

independent variables. The angles from the reference line to departure

point (_i) and to arrival point (_2) are a natural choice for two of the three

optimizing variables since they, along with the given orbital elements,

specify position and velocity in the known orbits (Fig. I). Further, except

for the special case when the arrival and departure points are colinear

with the center of mass, _I and _fi establish the plane of the transfer orbit.

The third independent variable must be one of the elements of the

transfer orbit: p, e, or co. p, the semi-latus rectum of the transfer orbit,

was the third parameter used for this study. It was chosen since it simpli-

fied the structure of the impulse function I(_@) = I(_I' @fi' P)" It also

avoided several undesirable discontinuities which are present in other

formulations. (A discussion of the use of alternate variables may be found

in References 1 and 2.)

TRANSFER GEOMETRY

Unit vectors (UI, _Uz) and radius vectors (rl, rz) toward the departure

and arrival points may be computed from _I, @Z and the elements of the

initial and final orbits.-':-_

U 1 = (cos @I' sin _I cos il, sin @I sin il) (I)

U 2 = (cos _2' sin _2 , 0 ) (2)

[ PJ ]rj = 1 + e. cos(¢j - 0_.) -3U" j = 1, Z
J 3

(3)

_:-'The subscripts I, Z, and t indicate initial, final, and transfer orbits.

Lack of a subscript is also employed to denote a transfer orbit parameter.
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Unit vectors normal to the initial, final,

defined as follows:

W = ( 0 - sin i cos iI)--i ' 1 '

w = ( o o t )

and transfer orbit planes are

(4)

(_)

U x U 2--i

= U x _U2 _ 0
-wt ]u-i _ u-z I -i

(6)

Two vectors which define the shape and orientation of the initial and final

orbits complete the transfer geometry description, (This formulation has

been suggested by Herget(4)).

e. = e [ cos c0j, sin co. cos i., sin co. sin i.] j = i, 2 (7)-j j J J J J

The true anomaly interval traversed in the transfer orbit (AO) may

be determined directly.

cosAO = (u_l U_z) 0 °< /xo<t80° (8)

Note that A0 is arbitrarily limited to the first two quadrants ("short"

transfers). A reversal of the algebraic signs of the transfer orbit velocity

vectors is employed to compute "long" transfer circumstances. For

elliptical transfer orbits, optimum impulse is defined as the least of the

optimum long and short transfer impulses. Note that this particular formu-

lation is singular if A0 = 180 ° or A@ = 0 ° For these cases the impulse

required is not unique since any transfer orbit inclination will satisfy the

geometry. In many special cases the optima occur whenAO = 180 ° and

an alternate set of computations is necessary to avoid this singularity.

IMPULSE COMPUTATION

The function to be minimized is the total impulse for the two-impulse

maneuve r:

i = i_ l + l!21 (9)

where

I = _v - _v1 (lo)-1 -t
1
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I z = v z _ v_t2 (11)

(When a double sign is used, the upper sign refers to the short transfer

case.) Velocity vectors in the initial and final orbits at the departure and

arrival points (V_I and _V2) and the corresponding velocity vectors in the

transfer orbit (Vtl and V_tz) are computed as follows:

i/2

-Jr :(_) w._j x (e.+_j t2_j) (12)

j = 1,2

1/2

Yr. =(p) _wt x (e + (13)
3

Equations 12 and 13 may be derived from Equation 3.26 of Herget. (4) An

expression for e is not included since this transfer orbit parameter is not

required in the final equations for impulse computation. The final impulse

equations are obtained from Equations I0 - 13 by substituting Equation 6

and performing several algebraic manipulations.

z : + [v + ZU_z] __vI (14)

I : v 2 ; [v - zU_z] (I_)--2.

where

V _-_
m

i/z
(_p) (_r2 - r_l)

ir_l x _r2 I

(16)

1/?-,
AO (17)

z = (_) tan -7-

Impulses corresponding to long and short transfers are compared

and the combination producing the lesser impulse is utilized for the remain-

ing optimization procedures.
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III. IMPULSE FUNCTION INVESTIGATION

While the formulation of the expressions for impulse computation is

relatively straightforward, the exact mathematical expressions are not

susceptible to analytical solution. One must therefore resort to numerical

techniques for optimizing the solution vector, I(__) = I(_l' _2' p)"

At best, conventional numerical search techniques only provide

information concerning a function's local properties. Yet a detailed under-

standing of the impulse function's structure is essential for interpretation

of numerical results. The number, shape, and relative importance of

minima are requisites to a complete analysis of transfer problems since

numerical optimization methods (e.g., steepest descent) find only that

minimum impulse which is closest to the point of search initiation. (2, 3)

A geometric ("_-space") representation of the impulse function was

adopted for this investigation. In Figure 2, p, _i, and _2 are measured

along the principal axes of an orthogonal coordinate system. All possible

transfers between a pair of orbits (excluding the A0 = 0 ° and A0 = 180 °

function singularities) lie within the volume defined by 0 ° -<_I < 360 °,

0°_< _2 < 360°., 0 < p < + co. Of course, _I and _2 undergo cyclical repe-

tition outside this volume.

Studying the impulse function in _-space requires visualization of

surfaces which are the loci of points having the same impulse. These

"impulse surfaces" are generally closed and surround optima in much the

same manner that the successive layers of an onion enclose its center.

Impulse surfaces may be visualized and studied by considering their traces

upon a cutting plane (Fig. 2). The resulting contours of equivalent impulse

that appear in most of the figures presented here will be shown to provide

a wealth of data in a concise easily understood form.

These contour maps are produced from an array of impulse values

which are parametrically generated from Equation 9 with _i' _2' or p being

held constant. Constant impulse contour lines, consisting of short straight-

line segments, are then fitted between the survey points. It is important

to note that the fidelity of the contouring technique depends directly upon

the number of survey points. This fact should be remembered when exam-

ining certain structural details of the figures presented here.

Several seconds of IBM 7090 time are required to contour a typical

array of survey data (500-I,000 points). A Stromberg Carlson 4020 CRT

is then employed to plot the contour maps. A description of the contouring

technique appears in Reference 5.
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OPTIMUM

TABLE 1. IDENTIFICATION OF OPTIMA

p IMPULSE

91 92 (mile s) (ft/sec)

1 75 ° 190 ° 6650 4900

Z 40 ° 300 ° 6600 5300

3 175 ° 75 ° 4600 5400

4 310 ° 40 ° 4600 5800

IV. p-OPTIMIZATION

The technique of passing a number of cutting planes through a given

9-space suffices to isolate optima and other pertinent features. However,

as a 9-space becomes more complex, this technique requires that numerous

contour maps be generated--each of them providing additional information

concerning the optimum transfer modes.

• . n T!A "p-optimlzatlo technique was developed to overcome the above

difficulties and thus present one contour map containing only optimum

impulse information.

Given 91 and 9Z, (i.e., r I and rz) , it is desired to find that p which

minimizes the impulse defined by Equation 9. Differentiating Equation 9

yields

I_1 • d_I1 _IZ • dI Z
dl : + (I8)

Since _V1 and V_Z are independent of p,

OV

Ol I - t1
-- 4- "

8p Op

(19)

OV

oI2 -t 2
_ :F

Op 8p
(zo)

This leads to an expression for the derivative of impulse with respect to

p, which may be set equal to zero.



147

HOHMANN TRANSFER c-SPACE

Figure 3 was produced by cutting the _-space associated with coplanar

circular orbits having Pl = 5,000 and Pz = 6,000 miles. Cutting planes

corresponded to _Z = 0 ° and p = 5,454.54 miles. In this case the

symmetry is so complete that an adequate description of the _-space is

possible with the two contour maps presented. Symmetry about the

¢i - @Z = 180 ° plane is apparent. The Hohmann transfer corresponds

to the straight line_¢ = (¢I, ¢i + 180°' p) with _I arbitrary and

p = 5,454.54 miles. All other impulse surfaces are cylinders having

elements parallel to the Hohmann line minimum. In Figure 3 the minimum

impulse contour corresponds to 2500 ft/sec.

INCLINED ASYMMETRIC ORBIT PAIR

Figure 4 concerns an orbit pair having the following elements:

Pl : _,_ _0___ mi "LD- : 6,000 mi

e I : 0.2 e2 : 0.2

coI = -90 ° 0_g = +30 °

i = 5 °
1

The five p = constant contour maps presented here adequately

illustrate the 9-space associated with a typical unsimplified problem. The

perfect symmetry and simplicity of the circle-to-circle case is in sharp

contrast with the seemingly amorphous impulse contours of asymmetrical

cases. The shapes and relative orientations of the two orbits are apparent

from the illustration which projects the initial orbit upon the final orbit

plane.

The existence of four distinct relative optimum transfers between

these two orbits is apparent. The approximate coordinates and impulse

associated with each of the optima are summarized in Table I. Uncontoured

portions of each survey plane correspond to hyperbolic and elliptical trans-

fer orbits which require excessive impulses.
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Note that Figure 5 readily illustrates the circumstances of the four

optimum transfers. At the same time it is possible to note their relative

importance and to infer certain other properties such as error sensitivity,

i.e., 81/8#i and 81/8#Z may be approximated from the contour maps. Other

features of #-space structure such as regions of extreme impulse are

apparent. The nature and properties of these features were the subject of

considerable investigation.

The entire computational procedure necessary to produce Figures 5a

and 5b required less than 1 minute of IBM 7090 time.

V. FORMATION OF LOCAL OPTIMA

This study resulted in the identification of mechanisms which guide

the formation of optima and determine their multiplicity. It was found that

the number, shape, and distribution of minima of the impulse function are

controlled by the type of asymmetries present in the given orbit pair.

Eccentricity, inclination, and the relative position of the lines of apsides

all have distinct effects upon the structure of function space.

EFFECT OF ECCENTRICITY PERTURBATIONS

The first orbit pair of Figure 6 represents a transfer from an

elliptical orbit (e I = 0.Z, Pl = 5,000 mi) to a circular orbit (Pz = 6,400

mi). The Hohmann optimum region of the circle-to-circle case has been

twisted into nearly horizontal and vertical o_timum regions. The optimum

transfer occurs at__ = (0 °, 180 °, Popt), (7_but near optimum transfers

are available throughout the entire range of #I" The strong warping of the

impulse contours is associated with the varying radial distances separating

the two orbits.

Addition of sufficient eccentricity (e I = eZ = 0.4; Pl = 5000 mi,

P2 = 6000 mi) to allow the orbits to intersect under the proper rotations

disturbs the Hohmann line optimum and forms two distinct optima(5) at

= (0°, 180°, Popt)and_ = (180 °, 0 °, Popt ). As additional eccentricity

(e I = eZ = 0.8; Pl = 5000 mi, P2 = 6000-mi) is added, the optima

become more pronounced and are separated by a larger impulse differential.

If the orbits are coapsidal, the optima always correspond to perigee-to-

apogee and apogee-to-perigee transfers.

COPLANAR ROTATION OF LINES OF APSIDES

When coplanar elliptical orbits (e I = e Z = 0.Z; Pl = 5, 000 mi and

PZ = 6,000 mi) are rotated, a new type of optimum modifying asymmetry

is introduced (Fig. 7). As the orbits approach tangency, the optimum
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a_ 1 [!l • (v--ZUl) -Iz " (z + Z-Uz)]
8p - :1: _p I_ xl - I -zl = o (zx)

Equation 21 is used to direct a numerical search that seeks the value

of p that minimizes impulse for the given 91 and 9Z" Though Equation 21

has several roots, usually only those roots which correspond to elliptical

transfer orbits are useful for impulse minimization. For certain elliptical

orbit pairs, it can be shown that optimum two-impulse transfers between

particular groups of end points result in hyperbolic transfer orbits. (6) The

range of p which produces an elliptical transfer orbit is bounded. These

boundaries (parabolic orbit limits) are defined as follows:

r I r2 - _rI . _r2

Pmin = r I + r Z + IZ(rlrz + rl . r2) ] 1/2

(22)

rlr g - _rI • r 2

Pmax r 1 + rI - I2(rlr2 + r I rz) ] 1/Z

(23)

Except for certain special cases, only one minimum impulse will occur

between these limits.(6) An effective numerical technique has been devised

to seek the required optimum impulse solutions where Pmin < P < Pmax"

Each determination of an optimum p requires less than 0. i second of

IBM 7090 time.

were

were

The contour maps presented throughout the remainder of this paper

generated using this technique. Approximately 500 p-optimizations

required for the generation of each contour map.

Figure 5a is a p-optimized survey of the 9-space associated with the

orbit pair which was examined in Figure 4. Note that the optimum impulse

(feet per second) for any 91, 92 may be read directly from the contour map.

The advantages of the p-optimization technique should be apparent from a

comparison of Figures 4 and 5a. Complete description of a 9-space

requires the generation of numerous cuts at various values of one of the

variables. Once these cuts are available, it is difficult to extract the

optimum impulse information. The p-optimization technique allows com-

plete description of the optimum impulse regions of a 9-space in one

contour map.

Another contour map (Figure 5b) presents the p contours associated

with the optimum impulse contours. The optimum p associated with any 91,

9Z is therefore available. One may easily proceed from these contour maps

to numerical searching programs which permit exact detailed examination

of regions of particular interest.(Z)
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impulse contours are bent into one section which is nearly horizontal and

another which is nearly vertical(A_ = 30°). The optima migrate to

locations adjacent to the coordinates of the point at which the orbits would

become tangent under further rotation. Further rotation (A_0 = 60°) causes

the orbits to intersect and the optima to shift from near the tangency point

to the horizontal and vertical regions mentioned earlier. These regions

correspond to transfers which utilize most of the total impulse at either the

departure or the arrival point---a single impulse transfer is possible if the

orbits are tangent or intersecting.

Further rotation causes the two optima to become less elongated, to

correspond to greater minimum impulse levels, and to migrate toward
o _ o

@ = (0 °, 18 , Pot?t)ands._ (180 ° , 0 , Popt ). The uncontoured regions
i'ndicate the excessive impulse which is required to transfer via high eccen-

tricity orbits which pass near the center of mass.

TANGENT ORBITS

.......... i..... _.;+o tangent and _l_n coapsidal, it can be shownV¥ il_ll _LJ_$.c_I_o.J. OJ. L.s_ are .....

that a one-impulse transfer at the point of tangency is optimum. However,

if the orbits have undergone coplanar rotation this is no longer true.(7)

Figures 8a and 8b present the impulse and p contours which result

from a pair of tangent orbits. The impulse for the one-impulse transfer

I(@) = I(73._74, 73._74, 6000) is about 1971.3 feet per second. Two seem-

ingly symmetrical regions corresponding to impulse levels of about 1963

feet per second are centered near _ = (74 °, 68°, PoRt) and_ = (68°, 74 °,

Popt)- A quick glance at the p contours associated wlth these optima
(Fig. 8bl indicates that a transfer orbit semi-latus rectum of about 5400

miles is optimum (note that Pl = 5000 mi and PZ = 6000 mi). This result

indicates that approximately equal initial and final impulses will produce the

optimum transfer.

INC LINATION

Inclination produces a division of a given @-space about the @I - @2 =

180 ° plane (Fig. 9). In this case two circular orbits are inclined I0 °.

Contours appear to radiate from the _ = (0 °, 180 °, p _) and _ = (180 °,
__ op_ --_

o ........

' Popt) polnts whlch are slngularltles in the impulse computahon formu-
lation. These points are optima if the orbits are inclined about their

semi-major axes, but for other orientations the optima may lie elsewhere.

Increasing the inclination causes the @-space division to become more

pronounced.

All @-spaces resulting from inclined orbits exhibit an inclination

"wall" which, in general, tends to double the number of optima which
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would have existed if the orbits had been coplanar. For instance Figure 5

results from adding inclination to a pair of elliptical orbits whose lines of

apsides are separated by 120°.

VI. ADDITIONAL @-SPACE STUDIES

Space does not permit the comprehensive examination of enough

@-spaces to develop a complete picture of the optimum orbital transfer

circumstances which arise from all possible orbit combinations. Figures

i0 and II are presented to answer several additional questions--and no

doubt raise several more.

The asymmetrical orbit pair which produced Figure 5 was altered to

produce Figures I0 and ii (i0: Pl = 4800 mi, P2 = 9000 mi, e2 = 0.8;

ii: Pl = 4800 mi, P2 = 7920 mi). The first pair of orbits can intersect

under appropriate rotations. Even though the final orbit is considerably

enlarged relative to the initial, the @-space structure remains similar to

that of Figure 5. The dominant role of orbit orientation is apparent from

this illustration.

The non-intersecting orbit pair (Fig. ii) exhibits only two optima

although the orbit orientations are identical. This example illustrates how

the number of optima is multiplied when orbits are capable of intersection.

VII. TWO-IMPULSE RENDEZVOUS

An optimum two-impulse orbital transfer is also an optimum rendez-

vous for two vehicles with an appropriate phase relationship. The fore-

mentioned orbital transfer techniques may easily be extended to allow

calculation of rendezvous time constraints for arbitrary @I' @2 and p.

In order to define a time constraint let zero time correspond to the

arrival of a vehicle in the final orbit at the reference line (_N) and let T be

the time at which the vehicle in the initial orbit will cross the same

reference. If tl, t2, and tt are the traverse times associated with the

true anomaly intervals @I, @2, and Z_8, then a sufficient condition for

rendezvous is that tI + tt = t2 - T. Expressing r in units of the final

orbit's period (T2) yields

T : (t2 - tI - tt)/ T 2 (24)
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Utilizing Kepler's Equation, it is a simple matter to compute

T((b) = T(_bl, _b2, Popt). Therefore, the values of T associated withthe
p-_ptimized impulse may also be contoured. Figure 12 superimposes the

p-optimized impulse and corresponding T countours associated with the

principal optimum of Figure 5. Clearly, T must equal .913 for the optimum

impulse rendezvous.

Of course, it will be a rare instance when T is such that the optimum

impulse rendezvous may be accomplished during a given revolution. For-

tunately, for non-synchronous orbits T changes each revolution, and a near

optimum value will eventually result. An impulse splitting technique which

is detailed in References 1 and 9 may be used to achieve a three-impulse

rendezvous which requires no more impulse than the optimum two-impulse

orbital transfer.* One may therefore avoid waiting a prolonged period in

order to achieve the optimum impulse rendezvous.

When T is specified, impulse optimization requires finding _I, _2 and

p such that the impulse and T surfaces are tangent. Numerical search

techniques such as steepest descent have been employed to seek the required

solutions. (l, 8, 9) Experience has demonstrated that economical and effec-

tive use of these numerical search methods requires adequate knowledge of

a function' s properties. With this knowledge it is possible to determine

initial conditions which will assure rapid convergence to the required

relative optimum.

Figure 12 allows one to approximate the conditions required for an

optimum time constrained rendezvous. Given T, one may locate the position

where the corresponding r line approaches nearest to the impulse optimum

(the locus of these positions is shown as a dashed line). The #i, _2 and p

located by this process will not usually yield an optimum time constrained

rendezvous. Note, however, that the optimum impulse must be less than

or equal to this approximate value. Therefore, the method provides a

convenient means for determining whether the impulse required for rendez-

vous is within vehicle system capabilities. The method also provides

information concerning the behavior of the impulse and T functions. This

information allows a good choice of initial conditions for subsequent investi-

gation of exact solutions by other numerical procedures.

VIII. CONCLUSION

Methods for systematically studying optimum two-impulse orbital

transfer between any pair of elliptical orbits have been developed and used

to investigate the properties of an "impulse function space." The

*Reference 1 utilizes a T which is the negative of the T employed here.
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mechanisms which govern the structure of this function space have been

determined and may now be employed to predict the optimum transfers

resulting from any pair of elliptical orbits.

A contouring technique was utilized to present large amounts of

optimum impulse information in a concise easily understood form. The

results obtained from function contouring have been verified through the

use of steepest descent optimization procedures. (2, 8) Initial conditions

taken from the contour maps always allowed the numerical search program

to converge to the proper local optimum within a few seconds of IBM 7090

time. Optimum impulses obtained from this exact numerical optimization

were only slightly better than those obtained from contouring. In all

instances where exact numerical solutions were required, the insight gained

through contouring methods proved to be an invaluable aid to subsequent

optimization by conventional techniques.

While the methods presented here are oriented principally toward the

area of space mission design, they also provide numerous clues which

point the way to analytical solution of numerous sub-problems.

NOMENC LATURE

Scalars

a

e

i

P

r

Semi-major axis

Eccentricity (magnitude of e)

Inc linatio n

Semi-latus rectum

Radius to satellite

t Time

/x@ Transfer angle (true anomaly difference in transfer

orbit plane)

Relative phase between vehicles--- rendezvous

time constraint

Gravitation constant
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Scalars

Angle from reference axis to departure position

in initial orbit -

_2 Angle from reference axis to arrival position in

terminal orbit

0_

Vectors

Argument of perigee, angle from reference axis

to perigee point

Right ascension of ascending node

e

I

N

r
m

U
-I

Orbit shape and orientation vector

Impulse vector

Unit vector denoting reference direction (line of

intersection of initial and final orbit planes)

Geocentric satellite position vector

Unit vector directed toward point of departure

from initial orbit

U
--2

V

W

Unit vector directed toward point of arrival in

final orbit

Velocity vector

Unit vector directed along orbit's angular momentum

vector

NMW
2

Independent variable vector (@I' _2' p)

Orthogonal unit vector set which establishes

reference coordinate system
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NOMENCLATURE

Scalars

a

e

i

P

A0

41

_z

P

Z

1

I

I*

Semi-major axis

Eccentricity

Inclination

Right ascension of ascending node

Argument of perigee, angle from reference axis

to perigee point

Semi-latus rectum

True anomaly angle traversed in transfer orbit plane

Gravitation constant

Angle from reference axis to departure position in

initial orbit.

Angle from reference axis to arrival position in

terminal orbit

Angle between r and r - r
--2 --2 --I

Angle between r and r - r
--1 --1 --g

Term defined in equation (14)

Functional form of I st velocity increment

Functional form of 2nd velocity increment

Functional representation of impulse

Function defined by equation (41), whose extrema are

also located in equation (37)

One of test functions used in analyzing short transfer
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Scalars

g

h

k

A-H

9_1 -9_9

O-

T

Vectors

The other test function used in analyzing short transfer

One of test functions used in analyzing long transfer

Other test function used in analyzing long transfer

Coefficients that determine interval-finding polynomials

Coefficients that determine minimizing polynomial

Function defined by equation (51)

Function defined by equation (52)

e

I

r

--I

Orbit shape and orientation vector

Vector from reference position to point of departure

on initial orbit

r

--2

W
I

Vector from reference position to point of arrival on

final orbit

Unit vector directed along orbit's angular momentum

vector

V

V
-tj

V.
--j

V
--par

V
--r

U.
--j

E,M___,_W2

Vector defined by equation (13)

"Velocity vectors in transfer orbit

Velocity vectors in initial and final orbit

Velocity vector in parabolic orbit

Velocity vector in circular orbit

Unit vectors in direction of radius vectors

Unit vectors in Cartesian coordinates defining the

reference plane



170

ABSTRACT

Analytical investigations of two-impulse transfers between elliptical
orbits, using vector analysis and other mathematical techniques, have
yielded pertinent, heretofore unknown facts about an orbital transfer
function. One particular mode of analysis, the Bell-Arenstorf technique,
helped show not only that the minimum velocity increment solution between
two points on elliptical orbits could be along a hyperbola, but also that
there could be two relative minima in this impulse function. Particular
examples of both these phenomena are given.

Although prior published analysis has been restricted mostly to
coplanar elliptical orbits, this analysis includes inclined elliptical orbits.
An eighth-order polynomial expression, the real roots of which may refer
to extrema in the impulse function, is determined. Since it can be shown
that some of these roots are extraneous--not corresponding to impulse
minima--two test functions are next determined that define regions in which
all extrema must lie. These regions identify those roots that do correspond
to extrema in the impulse function and those that are extraneous. These
new analytical findings have been incorporated into an earlier computer
contour mapping program that locates the optimum transfer between
elliptical orbits.

I. INTRODUCTION

One of the major problems of the nascent space age is concerned with
changing orbits in space. To transfer from orbit to orbit can require
immense quantities of fuel, far beyond the limitations of today's engineering.
It is, therefore, of extreme practical interest to be able to locate particular
modes of transfer between these orbits that use the least possible fuel.

The most general problem of optimum two-impulse orbital transfer,
in which the chief assumption is that the elliptical orbits are unperturbed,
permits both the departure point and the arrival point to be arbitrary and
finds the single best mode of transfer between the two given orbits. The
most general constraint is to fix the end points; then the optimization
procedure is carried out solely along a parameter defining all the transfer
orbits that go through these given terminals.

The impulsive case of orbital transfer is, of course, an ideal
situation. There is one instantaneous thrust from the initial orbit into
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the transfer orbit; there is a second instantaneous thrust to get into the

final orbit. The information gained from the solution of this problem should

provide a basis for the study of orbital transfer with finite thrust.

The majority of the published two-impulse orbital transfer work deals

with fixed terminals and co-planar orbits (2-4). The recent work by

G. A. McCue (5) represents an extension, by means of a numerical contour

mapping approach, to include both free terminals and inclined orbits. The

analysis in the paper presented here is valid for inclined orbits and is

directed towards solving the fixed terminal problem. However, since it is

necessary to solve this problem many times before the free terminal prob-

lem can be investigated by means of contour maps, the findings of this

analysis have been incorporated into Mr. McCue's numerical program.

II. EXPLANATION OF PROBLEM FORMULATION

Two F[eplerian elliptical orbits in space can be defined by their

orbital elements, a, e, i, _, and _0. In the general two-impulse orbital

transfer problem, it is desirable to locate the minimum velocity increment

solution between any two such Keplerian orbits. If the plane of the second

orbit of the transfer is the reference plane, then iz, the inclination of the

second orbit, is zero. The terms ordinarily referred to as the "nodal"

parameters, _I, and_z, are made zero by selecting the line of intersection

of the two orbit planes as the reference direction. (See Figure i)

N_ i_w2x
(1)

This leaves seven orbital elements (aI, e l, iI, _01 and a2, e2,

0_2--subscripts one and two refer to elements in the first and second orbits

respectively) that define the two orbits between which the transfer is to be

accomplished.

Three variables which define all possible means of transferring from

the first orbit to the second orbit are _I' the angle from reference line (N__)

to a departure point on the first orbit; _X, the angle from reference line to

arrival point on second orbit; and p, the semi-latus rectum of the transfer

orbit between the two points. The parameter p is chosen as the third

variable because it simplifies the nature of the impulse function. Other

formulations for the third variable can produce serious discontinuities (5).

The "total impulse" used in transferring between the orbits is defined

as the sum of the magnitudes of the velocity changes necessary to get from

the first orbit into the transfer orbit and then from the transfer orbit into



172
the second orbit. In this paper, an optimum impulse solution refers to a

particular configuration of the three variables that leads to the least

possible impulse between two orbits. A minimum impulse solution refers

to the transfer orbit which gives the least total impulse for a given arrival-

point, departure-point configuration.

III. TRANSFER GEOMETRY

In rendering the orbital transfer problem subject to analysis, it is

most convenient to express the important quantities in their vector repre-

sentation. The vectorsr I and KZ represent the vectors from the attracting

body to the departure and arrival points. Define unit vectors U 1 and U 2 in

the direction ofr I andr 2. The components of these vectors are then given

by

U 1 = cos 91 i + sin 91 cos iI j + sin 91 sin iI k__ (l)

U Z = cos 92 i + sin 92 j (3)

r

--m Pm
I + emCOS (9 m - _0m) --m'

m = 1,2 (4)

where i, j, and k are unit vectors in a right-handed Cartesian system with

i in the direction of N.

Three more useful vectors in the analysis are WI,_ W3 , and W_t--

these are normal to the initial, final, and transfer orbit planes and are

defined as follows:

_W 1 = -sin iI _J + cos iI _k

W = k
--2

(5)

(6)

__U1 x _U2

-wt=Iui x uzl where I_U_I x __UzI _ 0
(7)

To complete the vector description, define two vectors e I andeg--
these define the shape and orientation of the two orbits (6).
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e = e (cos _ i + sin_0 cos i j + sin a_ sin i k) (8)
--m m m-- m m-- m m-r

where m = 1,2

The part of the transfer orbit traversed in the transfer is a certain

true anomaly interval A@. This interval may be quickly determined from

cos e = (__u1 u z) o °< e<18o ° (9)

No generality is lost if the true anomaly interval is limited to the

first two quadrants. Although this does restrict the problem to "short

transfers," if the signs of the velocity vectors in the transfer orbit are

changed, the long [ransfers may be considered. The singularities in the

impulse function at A@ = 180 ° and A@ = 0 ° indicate that the problem is

simplified by considering the long and short transfers separately. Thus,

in order to determine the absolute optimum transfer between two elliptical

orbits, it is necessary to compare the optima found from all the short

transfers and all the long transfers.

For every elliptical transfer orbit between a given departure point

and arrival point, there exists both a short transfer and a long transfer.

However, when considering particular hyperbolic transfer orbits, it is

important to realize that either the short transfer or the long transfer is

meaningless--it would require going out to infinity and back.

IV. THE BELL-ARENSTORF TECHNIQUE

The "Bell-Arenstorf technique" refers to a geometrical method of

analyzing the two impulse orbital transfer problem. This method is based

upon some cogent variable relationships recognized separately by Mr. H. W.

Bell of North American Aviation, Inc., {7) and Dr. Richard Arenstorf of

Marshall Space Flight Center {8). The fundamental idea of the method -

that all possible transfers between fixed terminals on any elliptical orbits

can be represented by two hyperbolae - provided the stimulus for much of

this analysis.

For any two elliptical orbits, letr I andr Z be the vectors from the

reference position on the line of intersection to the departure and arrival

points, respectively. The angle between them is A@ and the size of this

angle can be selected to be always in the first two quadrants without any

loss of generality. By forming the vectorr Z rl, a triangle is made of

the three vectors in the transfer orbit plane.
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Define the two angles _ and _ (Figure 2) as follows:

= arc sin
IrA1 sin A@

Irz - r I--i

(10)

(ii)

Consider the locus of all possible velocity vectors that can act upon

the point defined byr I and trace a conical orbit path that goes through the

point defined by r 2. This locus defines all possible conic transfer orbits

between the two points, since a particular orbit is uniquely defined by its

velocity vector at a given position.

The velocity vector of any transfer orbit at the particular point r I is

given by (See Appendix i)

Vtl = Z + z u_l (Iz)

where

v

i/2
(_P) (12 - 11)

(13)

1/2

= (_) tan TA@
(14)

where p is the semi-latus rectum of the transfer orbit. Then Vtl may be

witten as a function of this variable p.

1/2 [ _r g - r a@

Vtl(P): P IZ1 x r21- 2
(i5)

where m is unit vector in the direction ofr Z - r I. Every positive value

of p greater than zero defines a certain transfer orbit whose velocity vector

atr I has components in the direction ofm and_U I.

For any coordinate axes, the locus of all points such that the product

of the coordinates is a constant forms a hyperbola with the axes as

asymptotes. Since the product of the magnitudes of the components in the

m-direction and the _U1 direction is independent of p,
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lr2 - rll 1/2 8 _ tan'_ Ir2 -rl I
tan _ =

r x r-i -21 i_ ix h l
(16)

the formulation of Vtl defines a hyperbola with the oblique coordinates

established by _and__U 1 as asymptotes. Thus the locus of all possible

velocity vectors leaving r I and arriving at__rg on a conic path forms a

hype rbo la.

Similarly, at r 2 the velocity vector for any transfer orbit (dependent

upon its semi-latus rectum) is given by

v = v 7,_uz (Iv)--t2

This defines another hyperbola that represents the locus of all possible

transfer orbits leaving from r I and arriving at r g. These are shown in

Figure Z. it is important to note that for every p, L,,_,_ is one "_

each of these hyperbolae that represents the transfer orbit.

These two hyperbolae refer to the so-called short transfer, in which

the true anomaly interval traversed in the transfer orbit is less than 180 °

If the true anomaly interval is greater than 180 ° ("long transfer"), the

other branches of these same two hyperbolae represent the locus of all

transfer orbits These are obtained by simply changing the sign of V
• --tl

and _Vt2.

In Figure 2, the vectors _V I and _V2, defining the initial and final

orbits, are in the transfer orbit plane to simplify the analysis. Then this

particular Bell-Arenstorf diagram represents a coplanar transfer and_V 1

and __V2, defined by

1/z

_v1 =(_l _) w_l x (el + __u1)

("_-z) l/z_vz = w_2 x (e2 + _u2)

must have magnitudes less than parabolic speed (_Vpar).

V 2 _ 2_

-- par r

(18)

(19)

(20)
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In the Bell-Arenstorf diagram, the vectors V 1 and V Z (which uniquely

define the initial and final orbits) emanate from r I and r 2 and must lie within

a certain radius containing all elliptical orbits.

In finding the minimum velocity change solution for this two-impulse

case, the function to be minimized is

l(p) : 91(p) + _z(p) (21)

where

= It Vtl (p) - --1V I (22a)

 z(p) -- IV2_ vt2 (P) I (ZZb)

The double sign on the transfer velocity vector refers to short and

long transfers (upper sign is short). In the diagram, this optimization

procedure requires that the sum of the distances from V 1 and _V2 to their

respective transfer loci be minimized. For every p, there is one and only

one point on each hyperbola corresponding to that transfer orbit. The dis-

tances marked Ilp and IZ (In Figure Z) represent simply a particularP
transfer orbit chosen for illustrative purposes. The sums of their mag-

nitudes would represent the impulse necessary to transfer between these

two points along that particular conic.

V. APPLICATION OF BELL-ARENSTORF TECHNIQUE

The Bell-Arenstorf technique provides an excellent geometrical image

of what is occurring in the two-impulse orbital transfer. By comparing the

magnitudes of the impulse vectors for different transfer orbits, one can

gain an intuitive feeling for the size of the impulse for a particular transfer

orbit. More important, though, was the fact that the Bell-Arenstorf

technique offered clues to two of the more important questions in the field.

In Mr. McCue's paper (5) he conducts a numerical search for the

minimum impulse for each arrival-point, departure-point configuration

and then, by a method of contour mapping, locates the optimum transfer

between any two elliptical orbits. One of his early assumptions was that

there could only be one minimum in the impulse function (variable p, semi-

latus rectum of transfer orbit) for a fixed pair of terminals. The Bell-

Arenstorf technique clearly showed the existence of a double minimum for

a certain case and thus implied the existence of certain configurations

under which a double minimum may be present.
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It has been implied in nearly all of the definitive analytical works in

this area, such as that by kltman(3), that the minimum velocity increment

solution between points on elliptical orbits was always an ellipse. The

Bell-Arenstorf technique suggested the existence of hyperbolic minima for

c ertain configurations--this fact was subsequently proved.

The use of the Bell-Arenstorf technique stimulated further analytic

investigations whose findings have been incorporated into Mr. McCue's

optimization program.

VI. LOCATION OF DOUBLE MINIMUM

In order to assert that there can be a double minimum in the impulse

function for fixed terminals, it is necessary only to find an example. By

considering a particular case with unique symmetry properties, this

example can be readily illustrated.

Consider the case where Irl I = Irzl(Figure 3). This makes the

angle a (Figure 2) equal to the angle _. Then the hyperbolae formed between

the oblique axes at both the departure point and the arrival point are equiv-

alent. If the entire coordinate system at r Z were flipped over and translated

torl, then these two hyperbolae would become coincident--they would

match up point for point, transfer orbit for transfer orbit. Then the impulse

function for particular elliptical orbits (defined by V 1 and VZ, both of which

now act at the same point) is only the sum of the distances from V 1 and V Z

to all points on the hyperbola. Then, for this case, the minimum impulse

solution corresponds to the point on the hyperbola from which the sum of

the distances to V 1 and V 2 is a minimum.

For points with equal radii, one possible transfer orbit corresponds

to a circular transfer. This transfer has a velocity vector (Vr) perpen-

dicular to the radius vector and'its magnitude is given by

V g = _ (23)
--r r

All velocity vectors emanating from r I that have magnitudes less

than (2r-_)I/7 define elliptical initial and final orbits. In the diagram this

range for VI. and V 2 is described by a circle marked parabolic orbit limit.

Suppose V 1 and V 2 are located in such posftions (See Figure 3),

relative to each other, that the line connecting them intersects the hyper-

bola (either short transfer branch or long transfer branch) twice. As p

varies from zero to its unbounded upper value, all possible transfer orbits
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have a corresponding point on the hyperbola. As p increases along the
hyperbola, the value of the impulse is obviously decreasing until p reaches
the value corresponding to a, where the line between V1 and V 2 intersects
the hyperbola. For values of p slightly larger than a (such as the p cor-
responding to point b), according to the triangle inequality the impulse
must be higher. Thus the value of p at a must constitute a relative min-
imum in the impulse function.

As p nears the value corresponding to point c on the hyperbola,
the triangle inequality states that the necessary transfer impulse is going
down again. For points past c, the impulse is rising again, and thus c must
also be a relative minimum. The fact that there can be two minima is thus
demonstrated.

Numbers were placed into the diagram and indeed a double minimum
(See Figure 4) occurred. The orbital elements for that particular fixed
terminal case are given on the graph. For this case, the long transfer
provides a greater impulse requirement for all transfers--thus only the
short transfer is plotted.

In Appendix 3 a short mathematical investigation of the criteria
for the existence of the double minimum in the case of equal radii is
carried out. This investigation, which did lend some intuitive understanding
to the problem, was not easily extendable to the case of non-equal radii.

VII. LOCATION OF HYPERBOLIC MINIMUM

The assumption has been made, in prior two-impulse orbital transfer
studies, that the minimum transfer between two points on elliptical orbits
always lies along an ellipse. Although this has never been proved, it has
been generally accepted. Use of the Bell-Arenstorf technique showed this
assumption to be false.

For the case of Irll = I zl , it is clear from Figure 5 that a

hyperbolic minimum may exist. Once again, the coordinate system atr Z is

rotated and flipped such that all possible transfer orbits are given by one

hyperbola. If the vectors V 1 andV Z lie in the shaded region (see insert),

the shortest distance from each to the transfer orbit hyperbola arrives at

a point on that hyperbola outside the parabolic orbit limit. Since the least

velocity increment - both to arrive in the transfer orbit and depart from

it - lies along hyperbolic transfers, the sum of the two, the impulse, must

have its minimum along a hyperbolic orbit between these two.

In investigating the more general case of non-equal radii, the

geometry yielded not only configurations for which the minimum velocity
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increment solution could lie along a hyperbola, but also some other
interesting properties about this orbital transfer function.

The general Bell-Arenstorf technique diagram can be modified (See
Figure 6) in such a way as to orient both hyperbolae about the same
coordinate axis with a common asymptote. Since for every p, the semi-latus
rectum of the transfer orbit, there is one and only one point on each
hyperbola, some manner of relating corresponding transfer orbits must be
found. In Appendix 3 it is shown that there exist two families of circles,
with centers on the r 2 - r I axis and radii dependent on the parameter p, that
intersect the hyperbolae in such a way as to identify the points referring to
the same transfer orbit. One family refers to the short transfers; the other,
to the long. The short transfer family begins at the origin, with a member
of infinite radius, and moves left through all possible values of p; the long
transfer family goes in the opposite direction, also with increasing radius
magnitude.

For every fixed arrival-point, departure-point configuration, there
are two bounds on the values of the semi-latus rectum of the transfer orbit
that define all elliptical transfer orbits. These "parabolic orbit limits"
are defined by (5)

r I r Z - _rI • __rZ
P = (z4)
max I/Z

r I + r Z + (Zrlr Z + 2r I r 2)

r Ir Z - r I • r z
P = (zs)
rain 1/2

r I + rZ + (Zr Ir Z + Zr I • rz)

In the Bell-Arenstorf diagram, as p increases from zero to infinity,

the radii of the family of circles diminish for both the long and short trans-

fers. It is important to note that for p > Pmax' the long transfer's being

along a hyperbola is meaningless; similarly, for p < Pmin' the short

transfer implies going out to infinity to complete the orbit.

Regardless of whatr I andr Z are, there exists some value of p that

defines the lower limit of elliptical transfer orbits. The circle marked

"parabolic orbit limit" has its center at a point that is a value of p at which

the long transfers change from hyperbolic into elliptical. Even though it is

true that for everyr I and r 2 this circle is located at a different place, it is

important that it does exist somewhere and thus can be located arbitrarily.

Then all initial orbits whose velocity vector at r I lies inside the circle of

radius A are elliptical; similarly for all final orbits whose velocity vector

at r 2 lies inside the circle of radius B. Suppose the initial and final orbits

define velocity vectors V 1 and V_2 such that they are located as in Figure 5.
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It is clear that the least first increment change (to get into the transfer orbit)

and the least final increment change are to transfer orbits that are hyper-

bolic. It is an easy extension to see that the sum of these two is a minimum

along a hyperbola somewhere between these.

In Figure 7, impulse is plotted against the semi-latus rectum of the

transfer orbit for a particular configuration. The parabolic orbit limits

are marked and the orbital parameters are given--clearly the minimum

transfer is along a hyperbola.

VIII. ANALYSIS OF IMPULSE FUNCTION

The location of these peculiarities in the impulse function prompted an

analytic search into the equations that describe the impulse problem. New

analytic boundaries, different from the parabolic orbit limits, were sought

for the minima. For fixed terminals (once again it should be pointed out that

this is a restricted case of the more general problem of optimizing between

any points on elliptical orbits), the impulse function is only dependent on p,

the semi-latus rectum of the transfer orbit. This impulse function, defined

by equation (ZI), has an extremum at all points p where

I _ _1 + __°_z_-0 (z6)
3p 8p 3p

In the analysis of the impulse function carried out here, only the short

transfers are considered. It is shown in a subsequent section that the

extension to include the long transfers is very simple.

Now

_I'I(P) = [ (V--tI(P) _ V---I). (Vtl(P) _ VI)]I /Z

i/2
= [(v(p)+ z(p)u I - v i) . (v(p)+ z(p)u I - %)]

= [f(p)]i/z (zv)
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f(p) = v(p) • v(p) + zZ(p) +_.V 1 . __V1 - Zz(p)_V 1 . __U1

- 2V_V_I v(p) + 2z(p)v(p) • U 1

= Ap + ZBp 1/Z + G - ZCp -1/2 - Dp -1

where the coefficients are given in Table i.

Similarly,

i/z
_z(p) = [ g(P)]

(Z8)

(Z9)

where

g(p) = Ap + ZEp I/Z + H - ZFp -I/Z - Dp -I

where the new coefficients are also given in Table I.

Then, in order for impulse to be an extremum,

(30)

8_I 8_2 i 8f 1 8g
+ - + -

op op 2% op 2%
0 (31)

(p)
1

_ -- ._

Of

8p

o__E.g
Op

(32)

Since _l(p) and _z(p) are always positive, it is easy to see from

equation (32) that 0f/8 p and 8g/8 p must be of different sign before an

extremum can occur in the impulse function. This important fact permits

the identification of the extraneous roots in the eighth-order polynomial

that will be derived.

Then

Of -i12 -312 -Z
- A + Bp + Cp + Dp

Op
(33)
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and

0g _ A + Ep -I/z + Fp -3/Z + Dp -Z (34)
8p

Before a meaningful expression can be worked out for the extrema in

the impulse, equation (37.)must be squared. Then the necessary expression

becomes

2

or

2 2

W-hen this equation is multiplied out using equations (27),

(34), together with the substitution

i/7`
S -- p

the necessary condition for an extremum becomes

8 7 6 5 4 3

_i s + _2 s + _3 s + @4 s + @5 s + @6 s + @7 s

(28), (33), and

(35)

(36)

2.

+ _8 s + _9 = 0 (37)

where the coefficients _i' i = I-8 are given in Table 2. The real roots of

this eighth-order polynomial must include all the values of p for which the

impulse is an extremum.

The squaring process introduced in equation (35) added some

extraneous roots to the octic--roots which do not correspond to extrema in

I(p). These can be identified by factoring equation (35) as the difference of

two squares.

z fsfz : 0

(i,l(p) 8g + _2(p ) 8f 8g 8f8--_ -_-p) (_,l(p)---_ (p) ) = 0 (38)8p 7` -_P



8fSince and v--s-_must be of different sign, only those real values of p
8p 8p

which are roots of
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q_l(p) 8___g+ _2(p ) 8f - 0 (39)
8p 8p

are true extrema of I(p). It is easily shown (See Appendix 4) that the

equation

O g 8f

_I,l(p)__ - _I,2(p)__ - 0 (40)8p 8P

contains the extraneous roots of the octic and refers to extrema in another

function, I_(p). Then

l':"(P) = _l (p) - _Z (p) (41)

Inouiries into the nature of this octic suggest that four of these roots

refer to extrema in Ie_(p). Although no general proof has been made, if this

fact were true for all configurations, then there could be no more than two

minima on either transfer branch. This would greatly simplify the applica-

tion of the contour mapping approach.

In Mr. Altman's paper, he identifies an eighth-order polynomial, the

roots of which refer to minima in the case of two-impulse orbital transfer

between coplanar orbits. Equation (37) extends the analysis, using different

techniques, both to include inclined orbits and to identify those roots of the

equation that are extraneous and do not refer to minima in the impulse

function.

IX. THE BOUNDARIES ON MINIMA

Since a necessary condition for the existence of an extremum in the

impulse function is that 8f/0p and Og/Op be of different sign, analyses were

next directed to determine the values for p for which they could be of

different sign.

From equations (33) and (34),

lim lira
Of _ Og _

A (42)
Op Op

p--oo p--oo
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3
 lrz -rl I

A = > 0 (43)
Z

Irl xrzl

and

lim lim
8f
__ = + 3g _ co (44)

0 +P _ 8P p _ 0 8P

because

2 A0

D = - bL tan T (45)

Since for p both very small and very large, 3f/ap and Og/0 p have the same

sign, we know that the region in which 8f/Op and 0g/0 p are of different sign

may definitely be bounded. The boundaries in which all minima in the

impulse function (on short transfer side) must lie are given by the least

positive value of p and the greatest positive value of p at which either

OgOf _ 0 or - 0 (46)
3p 8p

For s = pl/3, Of/Op = 0 where

As 4 + Bs 3 + Gs + D = 0 (47)

Similarly, 8g/3p = 0 where

As 4 + Es 3 + Fs + D = 0 (48)

These values for p that bound the minima can be readily obtained. It is

shown in a subsequent section that these equations also give the intervals

for the long transfer. Thus, definite, analytic boundaries on the possible

range of the impulse minima have been ascertained.

X. THE INTERVALS

Since both Of/Op and 3g/Op have negative values for p very small and

positive values for p very large, both expressions (47 and 48) must have an

odd number of positive real roots. Each of these quartic equations may
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have either one or three real positive roots. Regardless how many of these

roots each of these quartics has, all possible combinations of the roots can

be studied by investigating two types of intervals in which 8 f/8 p and 8 g/8 p

may be of different sign.

8f ag

Type A: i) _ and g--2£of different sign in [a, b]up

2)({}f_) = O; (g___p)ag = 0
p = a p = b

(49)

Type B: 1) Of a g
and _-p of different sign in [a, b]

(5O)

,, (;) :o
p = a p = a

_.A.I

It is important, to .................note that if, in oq,,_4on_. _=//,tAm 0 f/O p =_lu 0 g/O p are

zero at opposite ends of the interval from those given, the problem is not

realIy changed. SimiIariy, if in equation (50) it is 3g/0p which is zero at

both ends, the analysis of the types of intervals still holds. In type A each

of the functions is zero at one end of the interval; in type B, one function is

zero at both ends of the interval. The two types of intervals are illustrated

in Figure 8.

These intervais are divided into two types because the number of

minima possible in a given interval is determined by its type. Define two

functions _(p) and T(p) as

Of

o-(p) _ ap (51)
Og

Op

T (p) - '#1 (P) (52)
ca (p)

Obviously, an extremum in the impulse function occurs for all p at which

o-(p) = T(p).

Consider an interval of Type A. T is monotonic increasing and posi-

tive for all p in [a, b]. Also, note that

and

_(a) = 0 (53)

lim 0- (p) = co (54)

p_b
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From Figure 8, it is clear_ and T must intersect at least one time (pro-

ducing one extremum) in that interval. If they are equal more than once,

they must intersect an odd number of times.

Consider next an interval of Type B. Once again T is monotonic

increasing and positive for all p in[ a, b] . Here, though

¢(a) : 0 (55)

and

_(b) : 0 (56)

while for all p in [a, b] , _(p) > 0. It is evident from Figure 8 that _ and T

must intersect an even number of times in intervals of this type.

All possible permutations of the roots of these quartics can be

manipulated to reduce the problem to an analysis of these intervals. Most

frequently, both 8f/Op and 8g/ap have one real, positive root and produce an

interval of type A in which _and T intersect one time. It is also true that,

for the majority of the cases, the first and last real positive roots of the

two quartics will limit the search for the minimum impulse to elliptical

transfer orbits. These analyses do, however, explain the existence of the

two peculiarities located earlier.

XI. LONG AND SHORT TRANSFER

For nearly all the equations derived in the preceding sections, it was

assumed that the two-impulse orbital transfer was accomplished with a true

anomaly interval in the transfer orbit of less than 180 °--short transfer.

The symmetry of the problem makes extension to include the long trans-

fers very simple. To obtain the absolute minimum impulse, the two are

then compared.

Because of the symmetry (See Appendix 5 for detailed derivation of

long transfer equations) it can be shown that the real, negative roots of

equations (33) and (34) determine intervals on the long transfer side that

may produce minima. Similarly, it is the real, negative roots of the

general octic (Equation 37) that appear within those specified intervals that

determine values of p for which the long transfer may be an extremum.

This implies that all the analysis can be conducted by examining

three equations--two quartic and one octic. The real roots of these

equations--positive for short transfer and negative for long transfer--

define all the intervals in which the extrema may exist and then locate the

values of p at which extrema actually occur.
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XII. MODIFICATION OF COMPUTER PROGRAM

In Mr. McCue's work, he optimizes the transfer between two

elliptical orbits (not fixed terminals) by means of a contour mapping

routine in the 41-42 space that connects transfers of equal impulse require-

ment. In locating the minimum impulse for a particular 41-42 configuration,

he conducts a numerical search minimization along p that is confined within

the parabolic orbit limits. The results of the analytic investigations

presented here have been incorporated into the program to remove the
limitations.

The solution of the two quartics (Equations 33 and 34) gives the

intervals to which the numerical search for minima may be restricted. In

nearly all cases a search within these limits will require fewer iterations

than one conducted with the old arbitrary limits. If the steepest descent

program should--in rare instances--converge on two different values

within the same interval, the octic equation may be solved and its real

roots compared, to the _nterv_1_...........nf p_h1_ minima. For n_ _y_....._ 41 _4 2

configurations, this process will require no more computer time than it

did before the limitations were removed.

XIII. SUMMARY

New analytical approaches to the two-impulse, orbital transfer problem

are developed in this paper. This development precipitated the discovery

of both the hyperbolic minimum and the double minimum in the minimum

velocity increment solution between points on elliptical orbits. Further

analyses produced an eighth-order polynomial--applicable even for inclined

orbits--whose roots contain all possible extrema in the impulse function.

Next test functions were located that placed bounds on the regions in which

these extrema could exist and identified those roots of the octic that were

extraneous. The explanation of these extraneous roots--not corresponding

to minima in the impulse function--was given.

All these results have been used to modify an earlier computer pro-

gram. It is now possible to locate not only the absolute minimum two-

impulse transfer between fixed terminals for any elliptical orbit pair, but

also the absolute optimum transfer between any end points on those orbits.
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TAB LE 1

COEFFICIENTS OF TEST FUNCTIONS

A =

Z

1:2 -::1

B

(p1)i121£ixiz I
(_w x(i +u))]

C

tan 7

(pl)1/2

U (_w x e)]

m _

2 A@

tan 2

m

(p2) I/2'

(_r - 1:) • (w_z x (_ez + _uz))]

F __

_O
- _ tan

Z

:/2
(P2)

x_elI

G _

A@

2_ tan 7 [__UI+ I:: x :zl

H = --

P2

A@
21_ tan-

2

- I::x r21



TABLE 2

COEFFICIENTS OF EIGHTH-ORDER POLYNOMIAL
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q_l : AZ(G - H) + A (E 2 - B 2)

q_2

_3

_4

_5

_6

_7

¢
8

= AZ(4F - 4C) + A(2EG - 2BH) + 2EZB - 2EB 2

: A(8BF - 8EC + ZEF - ZBC) + EZG - HB 2

= A(4BD - 4ED + ZFG - ZCH) + 4BEF - ZCE Z - 4BCE + ZFB Z

: D(ZAG - ZHA - E z + B Z) + A(F Z - C Z) - 2BCH + ZGEF

: D(4FA - 4AC + ZEG - ZBH) + 4FBC - 4CEF + ZBF Z - ZEG Z

= D(8BF - 8EC + ZBC - 2EF) + FZG - GZH

= D2(4B - 4E) + D(2FB - 2HC) + 2FC 2 - 2CF 2

_9 = DZ(G - H) + D (C 2 - F 2)
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APPENDIX 1

Derivation of Transfer Velocity Expressions:

These equations appear in reference (5) and were originally derived by

Mr. H. W. Bell.

Begin with the vector expressions for the transfer orbit velocities,

l/z

Vtl (P) = (p) --tW x(e t +U1) (AI-I)

l/z

tz ) (A1-Z)_Vtz (p) = P Wt x (_et + __Uz)

where e t is a vector, not necessarily explicitly defined, that has the

magnitude of the eccentricity of the transfer orbit and is in the direction of

its perigee.

Then for all transfer orbits that include r I and r Z,

I I P (AI-3)'zl' : 1+ e U
--t --1

P (A1-4)
Izzl = 1+ e _Uz

--t

and by algebraic manipulation

e U. 1 - P 1 (A1-5)-t Izll

e U Z = p -1 (AI-6)
-t 1__zl

Then multiplying these equations by U 2

(% " ul) -uz = -uz lrl I

and U1 give s

(A1 -7)
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and

(et __u2) U I = __Ui Irzl

Then according to vector identities

(131 x 132) x e = -e x (U x UZ)--t --t • 1

(A1 -8)

-- -_ui(uz " it ) +uz(--Ui et)

Notice that

(AI -9)

(__uz x _uz)
W x + =
--t (--et UI) IUI xUzl x(--et + UI)

(U I x _Uz) x e (U x UZ) x U--t --i -- --i
+

U 1 x U z U 1 x U Z

+ u_%. _> - 5 /5 G/

(AI-IO)

iui_ _uzl

Similar ly,

w t x (e t + U_Z) =

u2 I_1- -'-_ 141
U__1 xU z

Then from Equations (AI-I), (AI-Z), (AI-10),

Vtl(p) = IU1 x UZI P IZl] IZZI

U • 13Z--i (Uz u-u-z)+ (UI _uz)

(AI-II)

and (Al-il),

+(i -U_I UZ) U1]

(Ai-lZ)
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Vt2(P) = (__)I/Z

note that

, ]Iu1 xU21 P I_1 - IS21' - (1 - u 1 • u 2) u 2

(AI -13)

U 1 U 2 -- cos A 0 (A1-14)

and

I U 1 xU 2 I = I U1 I I U2.1 sin A 6) = sin A e (Al-15)

Furthermore,

p [__, -,u 1 p I-U2z2 - -_ Zl ]
Iu1xU 21[ Izll Izzl ]

P (_r2 - _rI )

= Iz 1 xzz I (AI-16)

therefore,

--tl r x r
-i --2

cos _0
+

sin A 8

But

1 - cos £_8 A8
= tan --

sin A O 2.

which implies that

1/z [pVtl(P) :- _ (r2 - r 1)

p _r 1 x r 2
+ tan-_U1] = V + z__U1

(AI -17)

(Al-18)

(AI - 19)

':" sin A0 = W t (U 1 xU2)--this implies that angle from U 1 to U g is less
than 180 °
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Similarly, from (Al-13),

Zt2(P) = X- z_U2 {AI -20)

where

(_p)l/2 (£2 ---rl)

z = IrIxzzl
(AI -21)

and

Z ---- (Al -22)

APPENDIX 2

On the Criteria for Existence of Double Minimum in Case of Equal Radii:

After the existence of the double minimum was first established the

next research was directed toward finding the necessary and sufficient con-

ditions for this existence. In the equal radii case, the answer was more or

less obtainable.

_f, for any r I - r 2 configuration where ]rl I = ]_21, the transfer

velocity (See Figure 2) hyperbola is considered to be symmetrical about an

x-axis of a rectangular Cartesian coordinate system, the analytic equation

of this hyperbola can be derived. From the general expression,

2 2
x y

a2 b 2

1 (A2-1)

and the knowledge that

a

and the fact that there exists one point Po on the hyperbola where

Po = sin _Pi + cos _j
(A2-3)
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AB

= 45o+-7-

the equation for this hyperbola is given as

r(y2 2 2 2cos _,- x sin _') = _ cos 2ff_ (A2-5)

where

l£21 = l_ 11= r (A2-6)

2 _ cos 2ff_a = _ (A2-7)
2

r sin

b 2 __ _ _ cos 2_ (A2-8)
2

r cos

The two elliptical orbits, initial and final, are defined by their velocity

vectors atr I andr 2. The coordinates of these vectors in the same coordi-

nate system as the hyperbola are readily found from the geometry and

elementary c ele stial mechanic s(1).

Suppo s e*

v = x i + Yl j (AZ-9)--I I-- --

v2 = x2!+ Y2i (AZ-10)

Then for every pair of elliptical orbits, two points in this system are

determined. There is also a corresponding magnitude dv, where

1/2
= _ + )2

d v [(x 2 Xl)2 (Y2- Yl ] (A2-1 I)

In the Bell-Arenstorf diagram, it is important to remember that for

the case where r I =r2, impulse for a particular transfer is nothing more

than the sum of the distances from _VVI and V 2 to the point on the hyperbola

representing that transfer.

* The actual analytic expressions for these coordinates have been omitted

because of their detail.
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For any initial and final elliptical orbits, let the points defined by V__1

andV 2 in this coordinate system be considered as the foci for a family of

confocal ellipses. Each scalar value k,

where k > d (A2-12)
v

defines a member of this family. Let

k = s I + s2 (AZ-13)

Then sI and s 2 are, for any particular ellipse, the distances from_VV 1 and

V 2 to that ellipse--their sum must be a constant for any member of the

family.

In terms of the Bell-Arenstorf diagram, each member of the family

corresponds to a certain impulse value--as k grows larger, eventually a

member of the family (See Figure A2-1) intersects the hyperbola at a point

of tangency. That point on the hyperbola, representing a particular transfer

orbit, must be a relative minimum in impulse. This is easily seen if the

next member of the family is considered--it intersects the hyperbola at two

points, one on either side of the earlier point oftangency--it represents

higher impulse. It is an easy intuitive extension to realize that every point

at which a member of the family of ellipses is tangent to either branch of

the hyperbola produces a relative extremum in either the long or short

transfer.

In Figure AZ-I, on the right, an example is given of a typicaiV 1 - V g

configuration that produces one point oftangency--one relative minimum--

on each of the two branches. The other example is a_VV1 -_VV2 configuration

that produces a double minimum (see members Z and 3 of the family) by

having three points of tangency on one branch of the hyperbola. Note that if

the family of ellipses has three members tangent to one branch of the hyper-

bola, there must exist some member of the family that intersects one branch

of the hyperbola four times.

Since the analytic equation for this family of ellipses, using sI + sg = k

as the variable parameter, can be readily derived, the criteria for the exist-

ence of a double minimum can be simplified--for some member of the

family, the fourth-order polynomial representing the intersection of tha£

ellipse and the velocity hyperbola has four real roots of the same sign (on

the same branch) if and only if a double minimum exists on that branch.
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Method of Determining Corresponding Transfers on Velocity Hyperbolae:

In Figure 6, the hyperbola representing all possible transfer orbits
that arrive at_rZ and pass through_r I is transformed so that both of the
hyperbolae have the same reference point and one common asymptote. It is
next necessary to determine the corresponding points on the hyperbolae: that
is, to find some way of relating--transfer orbit for transfer orbit--the point
on one hyperbola with the point defining the same transfer orbit on the other
hyperbola. Because of the high symmetry and so that Figure 6 may be used,
only the long transfer has been considered here.

Then if,

(_)I/2 ir 2 _ r! ] (A3-i)

k = 1_qx_ zl

and

AS (A3-2)
h tan-x-

and rn is defined as a unit vector in the direction of r Z - r I.

Vtl(P) = _ kpl/2 -1/2m - hp U (A3-3)

Vtz/p_,, = _ kpl/Z__m+ hp'-l/g__2U (A3-4}

It is obvious then that these two velocity hyperbolae have equal

components in the m-direction. Furthermore, for each vector, the magni-

tude of the other component is the same. Thus the only significant difference

in these functions is given by the different directions of U 1 and U 2.

For any real, positive value of p, the component of each of these

transfer velocity vectors in the r 2 - r I direction is given by

V
--tl (compr 2 - r 1) = --Vt2 (compi 2 - i 1)

1/2.
= - kp (A3-5)
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Therefore for any p, there exists some point on the r Z ,- r I axis that
corresponds to this component. Suppose a circle of radius r', where

r _;'_: hp 1/2 (A3-6)

is circumscribed about that point as center. Then both the transfer velocity
vectors for that particular transfer must end on that circle. Therefore, for
any p, there exists a circle with center at a point on the r g - r I axis that
will intersect the hyperbolae at the corresponding points.

It is an easy extension, therefore, to realize that the corresponding
points on the hyperbolae are located by a family of circles with variable
radii and centered on the r g - r I axis--the center and the radius being

functions of the variable parameter p defining the transfer orbit.

APPENDIX 4

Identification of Extraneous Roots to Octic:

The eighth-order polynomial expression (Equation 37), whose roots

contain the values of p at which the impulse function has a minimum_ also

has some roots that do not refer to impulse extrema.

This octic can be factored as the difference of two squares to produce

equation (38),

ag _f _g _f

It has already been shown that the equation

_(p) 8g+8p q_2(p) _POf) : 0

gives roots to the octic whose p values do correspond to extrema in the

impulse function.

The other factor

(A4-1)

(A4-2)

(%(Pl %Iplaf)8p- "_p : 0 (A4-3)

produces roots to the octic that have no correspondence with impulse

extrema.
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Consider the function l'_(p), where

199

I*(p) : %(p) - _z(p) (A4-4)

Then I_(p) has extrema at every value p where

0% 0% i of 1 0g
- 0

op _p 2% 0p 2% 0p
(A4-5)

This occurs whenever

or

8 g _2(p ) 8 f 0 (A4-6)%(P) 3--p Op -

This identifies the extraneous roots.

This function I_(p) corresponds to the difference between the

magnitudes of the two velocity increments. Gases where this function has

extrema for real values of p are not hard to locate. However, every real

extremum for this function must lie in an interval in which 3f/3p and Og/3p

are the same sign. By using the interval technique described in section XI,

these roots can be identified.

APPENDIX 5

Derivation of Long Transfer Equations:

For the "long transfer", the lower sign on the double-sign expressions

for _I (p) and ¢dz(p) (see equations (22) and (23)) is used.
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T hu s

_l(p) = [-vti(P) -vii = Ivti(p)+Vil

= [(VtI(P)--+--IV ) • (Vtl(P)_ +_VVI)]I/2

[(v(p) + z(p) U i +_VVI) • (_v(p) + z(p) U 1 +_VVI) ]

1/2

i/2
[h(p) ] (A5-1)

where

= _v(P) ._v(p) + z2(p) +__IV "__V1 + 2z(p) _v(P) "Ul-h(p)

+ ZV__I "--v(P)+ 2z(p) V 1 "__U1

i/2 -i/2 -i
= Ap - 2Bp + G + 2Cp - Dp (A5-2)

where the coefficients are given in Table i.

Similarly,

_2(p ) = [k(p)]l/2 (A5-3)

where

k(p) Ap 2Ep I/2= - + H + 2Fp - Dp (A5-4)

and these coefficients are also found in Table i.

Equation (32) is now replaced by the following criterion for the value of

p at which the" long transfer impulse has a minimum

3h

%(pl -o-b-
•z(p) - ok

Op

(A5-5)
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Now ah/ap and ak/Sp must be of different sign in order for the long transfer
impulse to have a minimum. Then

Oh -1/2 -3/2 -Z
0p - A - Bp - Cp + Dp (AB-6)

and

Then

0k A - Ep-I/2 Fp-3/Z -Zm = - + Dp (A5-7)
0p

and

lim 0h lim 0k
_ -- = A (A5-8)

p_ao 8p p_co Op

lira Ok lim Ok
_ _ -co (A5-9)

40 + _0 +p Op p 0p

Thus by an analogy similar to the short transfer case, the minima must be

in bounded intervals. These intervals can be found by analyzing the roots of

two fourth-order polynomials.

Oh _ 0 _ As 4 - Bs 3 - Cs + D = 0 (A5-10)
0p

i/z
where s = p

and

0__kk _ 0 _ As 4- Es 3 - Fs+ D = 0 (A5-11)
0p -

These fourth-order equations that produce bounds on the long transfer

minima are very similar to those (see equations (47) and (48)) that provided

the regions for the short transfer minima. In fact, if s = a is a real root of

equation (A5-10), then s = -a must be a root of equation (47). The same

correspondence holds for the roots 0k/0p = 0 and Og/Op = 0.

Since the only values of p that are of practical interest in either case

are for p real and positive, by simply analyzing the.reaI roots of equations

(47) and (48), both the long and short transfer intervals can be ascertained.
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An eighth-order polynomial whose roots contain the impulse minima

also exists for the long transfer. By squaring equation (A5-5), the neces-

sary expression becomes

2 2

h(p)(a_p k) - k(p) a(-_p) = 0 (A5-12)

If this expression is multiplied out in terms of equations (A5-3), (A5-4),

(A5-6), and (A5-7), the necessary condition for the existence of an extremum

in the long transfer impulse becomes

8 s7 6 5 4 3 2
91s - 9Z + 93s - 94s + 95s - 96s + 97s - 98s + 99 = 0

(A5-13)

where for i = I-8, the 9i coefficients are defined in Table 2.

Once again, if s = a is a real root of equation (A5-13), then s - -a is

a real root of equation (37). Since the only values of p that are of practical

interest are real and positive, both the long and short transfer extrema can

be located in the analysis of the single octic. This symmetry would have

been suggested by the Bell-Arenstorf technique.
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OF THE TWO FIXED CENTER PROBLEM

TO LUNAR TRAJECTORIES

by

Mary Payne

SUMMARY

Six methods for the approximation of lunar trajectories by the two fixed

center problem are developed. Four of these methods arise from a formulation

of the restricted problem in a rotating coordinate system. The origin of the

rotating system, to be regarded as the center of rotation is to be so selected as

to improve the degree of approximation. The other two are developed from a

formulation in an inertial system with fictitious fixed positions of the earth and

moon selected so as to improve the approximation.

The results of a numerical comparison of the six methods with a typical

lunar trajectory and the Kepler predictions are presented. These results are

discussed and some suggestions are made for further development of the theory.
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LIST OF SYMBOLS

R

R 1

r 1

R 2

r 2

/

u.

L

g

a,_,7

A 1 =A-fl_

R A

IA

Position vector of vehicle relative to the earth-moon barycenter

Position vector of the vehicle relative to the earth

Distance of vehicle from earth

Position vector of the vehicle relative to the moon

Distance of vehicle from moon

Gravitational constant times mass of the earth

Gravitational constant times mass of the moon

Position vector of moon relative to the earth

Distance of moon from earth

Velocity vector of the moon relative to the earth

Angular velocity vector of the moon relative to the earth

Magnitude of

Origin, relative to the barycenter, of the rotating coordinate
system

Constants relating A to L, _and

Projection of A on the plane of the moon's motion

Position vector of the vehicle relative to A

Hamiltonian for restricted problem in a coordinate system
rotating with angular velocity _ about A

Position vector of vehicle relative to A in the rotating system

Momentum vector conjugate to [_A
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H E

H 1

M(t)

5

H

P

Hamiltonian for the Euler, or two fixed center problem

Perturbation Hamiltonian

Rotation matrix through an angle -0_t about

A parameter introduced to improve minimization of the effect
of the non-integrable terms in the perturbation equations

Hamiltonian in the inertial system

Momentum conjugate to R in the inertial system

SUBS CRIPTS

E

R

O

F

Refers to Euler problem

Refers to restricted problem

Refers to initial value

Refers to final value

NOTE : In general, capital letters represent vectors and the corres-
ponding small letters their magnitudes. Bars over vectors
denote vectors in a rotating coordinate system.



INTRODU CTIO N

This report contains a detailed discussion of two general methods for treating

the three dimensional restricted problem of three bodies as a perturbation of the

two fixed center problem. The first method is based on a formulation of the restrict-

ed problem in a rotating coordinate system and the second on a formulation in an

inertial system. In both methods perturbation equations are obtained for the initial

conditions of the two fixed center problem regarded as osculating time varying

parameters for the restricted problem. Both methods may be regarded as generali-

zations of a method developed by Arenstorf I and the first method using the rotating

system is an extension of work described in an earlier report z.

Arenstorf formulated the two dimensional restricted problem in a coordinate

system rotating about the barycenter and obtained perturbation equations for the

initial values of the canonical variables (porition relative to the barycenter in the

rotating system and its conjugate momentum)._ The generalization treated in

Reference E2_ included the extension to three dimensions and was carried out in

a system rotating about an arbitrary point fixed relative to the earth and the

moon. This center of rotation was then selected so as to minimize the difference

between the Hamiltonian functions for the restricted and two fixed center problems.

The present generalization consists in an attempt to minimize the effects of the

non-integraBle terms in the perturbation equations, which arise from derivatives

of the perturbing terms in the Hamiltonian, rather than the perturbing Hamiltonian

itself. In addition another parameter is introduced which allows part of one of the

integrable terms to be used to further reduce the effect of some of the non-integrable

terms. Thus altogether four parameters, three of which are the coordinates of the

center of rotation, are available for the minimization.

A method for the determination of these four parameters is presented, and a

set of osculating initial conditions is obtained by an approximate integration of the

perturbation equations. In addition to this set three other sets are obtained by

variations in the values of these parameters. In all of the methods developed the
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center of rotation is close to the center of the earth if the portion of the restricted

orbit to be approximated has a close approach to the earth and no close approach

to the moon. The center of rotation is close to the moon if the portion of the

restricted orbit has a close approach to the moon and not to the earth. For mid-

course portions, the center of rotation is somewhere between the earth and the

moon. No attempt has so far been made to extend the theory to the approxima-

tion of portions containing close approaches to both the earth and the moon.

The formulation in the inertial system makes use of fictitious fixed portions

for the earth and moon, so selected as to reduce the effect of the non-integrable

terms in the perturbation equations. Two sets of formulas result which differ

in the approximations used in the integration of the perturbation equations.

Altogether, then, six schemes are developed for approximating the restrict-

ed problem by the two fixed center problem. These schemes have been tested

numerically for various portions of a typical lunar trajectory obtained by numeri-

cal integration. Some results of this numerical comparison are presented,

following the analytical treatment.

The comparison shows clearly that the formulations in the rotating system

are superior and the reasons for this are discussed in the last section.
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THEORY FOR THE ROTATING SYSTEM

Derivation of the Perturbation Equations

The equations of motion of the restricted problem in an inertial system with

arigin at the barycenter are

•. R 1 , R2
R=-U 3 _ 3

r 1 r 2

Consider a point A defined by

A=c_L+_+yL"

where L and L are position and velocity vectors of the moon relative to the earth,

and hence are known functions of time satisfying the relation

L =- (D+#') L =
_-_ _x (_xL) AI=_L+yL

"" = _ oo2 A1= _x L A=_x(_xA)

LxL
2

£

The point A thus rotates about the barycenter with the earth and the moon. The

equations of motion for the restricted problem in an accelerated coordinate

system with origin at A, but with axes always parallel to those of the inertial

system, are

•. R 1 , R2 ..
RA = - 'u 3 # --_-A

r 1 r 2

since

oo °° o°

R=A+R A, R=A+R A, R =A +R A

and finally in a coordinate system rotating about A with angular velocity _ the

equation of motion become

(1)

(2)

(3)

(4)

(5)
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"-" Rl h 2 "'

RA=-/_--3- /_' --_-A - _x (_XRA) - 2(_XhA)

rI r2

(6)

where bars denote vectors in the rotating system. We assume that at time

t = 0, the axes of the rotating system are parallel to those in the inertial

system, so that the constant vectors A, A and A satisfy the relations

'- "- 2_I _¢2= A (0) A= A(0) A= - _ = - AI(0)

Itis readily verified that the Hamiltonian

(7)

I--2 __-__ o_2 -
HA = 2" P A - r_l r 2 R A- A 1- _'h A x PA (8)

is a Hamiltonian for the problem represented by Eq.

R A = gradp, H A = PA - g_x h A
A

(6) with

(9)

and

: .. RA gradhAPA = RA + g6x = - H A

R1 _p' R2 +_2 Al-12x PA= - bL --3 --3
r 1 r 2

R 1 R 2
/

_c 2 A'I- _x R/_ 12x (_x RA)

r 1 r 2

(i0)

which reduces immediately to Eq. (6). A word on the relation between position in

the rotating system h A and its conjugate momentum PA and the position RA and

velocity RA in the non-rotating system is necessary for the interpretation of re-

sults to be obtained later. Since the rotating and non-rotating systems are assumed

coincident at t = 0

=RA0
A n

PA0 = RA0 + _x RA0 = RA0

(11)
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• °

are vector equations which are valid component by component, and since RA0

is the velocity relative to A in the rotating system while _x RA0 is the velocity

due to the rotation of the system it is seen that the initial value of the momentum

conjugate to RA is just the velocity in the non-rotating system. The same state-

ments hold for time t also, except that to get component agreement a rotation

through taSt is necessary. That is, at time t

RA = M-l(t) RA

RA = M-l(t) PA = M-l(t) (RA + C_x RA)

where M-l(t) may be regarded either as a rotation of the axes of the rotating

system through an angle -o_t or as a rotation of RA and PA relative to the

rotating axes through and angle u_t, both rotations about the vector _ which is

the same in both systems.

The Hamiltonian H A may be written as the sum of

1- _1 _K
H E = _ PA 2 - rl r 2

the Hamiltonian for the Euler problem with Hamilton equation

£
m

= - HE = PAER AE gradPAE

_ .. R 1 R 2
PAE = RAE = - bt--_ - /_' ---_-

r 1 r 2

and a perturbation

H 1 o_2 -=- RA ° AI-fI'RA x PA

where the subscript E in Eqs. (14) refers to the functional forms for RA and

PA obtained by solving Eqs. (14).

A solution of the restricted problem with Hamiltonian given by Eq. ( 8 )

and Hamiltonian Eqs. ( 9 ) and (10} is now sought in the functional form of the

solution of the Euler problem with time varying initial conditions. That is,

(12)

(13)

(14)

(15)
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one seeks the solution of the restricted problem,denoted by a subscript R, in the

form

RAR (RAR0' PAR0' t) = RAE (RAE0(t), 13AE0(t), t_

PAR (RAR0' PAR0' t)= PAE (RAE0 (t)' PAE0 (t)' t_

with initial conditions for the restricted andEuler problems satisfying the rela-

tions

RAR(RAR0 ' PAR0' 0)= RAR0

PAR(RAR0 ' PAR0' 0)= PAR0

= RAE (RAE0 (0)' PAE0 (0)' O_ = RAE(0)

= PAE _AE0 (0)' PAE0(0)'0_ = PAE0 (0)

It has been shown by Arenstorf lthat the functions FtAE0(t ) and PAE0(t)

necessary for the validity of Eq. (16) satisfy the differential equations

d

d_- RAE0 (t) = grad PAE0 Hi

d

dT PAE0 (t) = - gradRAE 0 H1

where

H1 = H1 AE0(t), PAE0(t), tJ

is obtained_by substitution of f_AE (RAE0 (t)' PAE0 (t)' tj and PAE (RAE0 (t)'

PAE0(t), t) for It A and PA in H 1 (given by Eq. (15). To actually carry out the

substitution using the solution of theEuler problem (which is known in closed form)

and then compute the gradients required in Eq. (18) would be very complex be-

cause of the extreme complexity of the closed form solution. Even could this

be carried out the integration of the resulting highly nonlinear equations in

RAE0(t) and _AE0(t) would be very difficult. Further, any approximation method

for integration of perturbation equations for initial conditions must be developed

with great care to avoid the introduction of troublesome secular terms, which

increase in order with higher order approximations.

(16)

(17)

(18)

(19)
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In view of this last fundamental difficulty, only a first approximation will

be attempted. This approximation will lead to some integrable terms in the

perturbation equations and the point A will be selected in such a way as to reduce

the effect of the non-integrable terms, which will then be ignored. The resulting

expressions for the time variation in the initial conditions and hence the solution

of the restricted problem represented by Eq. (16) will thus have limited validity

in time. The hardest part of the problem will be in obtaining an estimate for

duration of validity. Although this might appear to restrict considerably the

application of the theory, it should nevertheless be noted that from the solutions

of a sequence of two fixed center problems, each valid for a certain time, the

solution of the restricted problem may be constructed solely in terms of closed

form calculations without the use of numerical integration. Such a procedure

will be outlined later.

Explicit Form of the Perturbation Equations

To proceed with the approximation H 1 is written in the form

= x - 0¢2 8 RAE0 A1- u_2 (1-5) RAE XlHI - _'rtAE0 PAE0

R1 _ R2

r 1 r 2

(20)

where the integral is obtained by time differentiation of (-_28 RA_ Tkl-_-_AEX _AE )

and use of the Hamilton Eqs. (14) for the Euler problem. The first two terms

of H1 will be shown to lead to integrable terms in the perturbation equations (18) for

the initial conditions. The factor 8 permits part of the R/_ A 1 term to appear with

the integrable terms and part with the non-integrable terms. This second part helps

to reduce the effect of the other non-integrable terms. The third term and the

integral are not written explicitly in terms of initial conditions. It is these terms

for which an effort at minimization will be made by proper selection of the factor 8

and the point A. To see how this may be clone one now takes the gradients of H1

with respect to _tAE 0 and PAE0 to obtain the perturbation equations. The differ-

entiation of the triple product in the integral is facilitated by noting that
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so that

I

p,+p,

h A x I{2 = RA x -_--_+/_, 7, j

(21)

(22)

The perturbation equations for the time derivatives of _tAE0(t ) and PAE0(t)

are readily verified to be

d

d-_ RAE0(t) = gradpAEoH1 = - _x RAE 0 - o_2(1-5) _RP A1

- FI- 2 npAx- ap( xM- Q) ]dt
(23)

and

d - =- _x _c25Al+CC2(1-5)@RRA1d-}-PAE0 (t) = - gradRAEoH1 PAE0 +

+ .I_-u_26 _'pR A1 - _RR(_X M - _ Q) ! dt

(24)

where the M and Q are vectors given by

/

X+ u ,L A_.P--,L

M=_ _+3U + _' _'+3p

r 1 r 2

Q =_ # x +-P-- ,
r

1

(25)

+ u' i_'RAE X ___p__, LI_h2

r2

These vectors are so defined that they have the same dimension. The _'s are

matrices given by
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-- PA"

AE0i _-5 PAE0i

(26)

with the i th row and jth column containing the derivative of the jth component of the

time varying vector in the numerator with respect to the i th component of the initial

value vector in the denominator evaluated at RAEO(t ) and PAEO(t). It may be noted

that the transposes of these matrices constitute the transition matrix for the Euler

problem with the transposes of the first two matrices forming the top three rows

and the tr_:_svu_es of file last two matrices forming the bottom three rows.

Determination of the Origin A and the laarameter 6

The first term in the right hand side of Eq. (23) and the first two terms on

the right side of Eq. (24) depend only on the initial values RAE0(t ) and PAE0(t)

and if these were the only terms present Eqs. (23) and (24) would be integrable.

The remaining terms all involve components of the transition matrix for the

Euler problem and no attempt will be made to include them in the integration.

Instead methods will be sought for making them small, and this will be done by

seeking an approximate minimization of the vectors on which the matrices operate.

These vectors appear in both equations as follows:

outside the integrals

inside the integrals

together with M and Q defined in Eqs. (25), Which appear inside the integrals.

It will be noted that all these vectors have the same dimension. The vectors

M and Q are functions of time. Since however, they have, effectively, the cubes

of r 1 and r 2 in the denominator, it is clear that they are large only for brief

periods of time at approach to the earth or the moon closer than a few earth

radii.

(27)



228

As a first trial at minimization, 5 and A were sought such that the

scalar cr

(_=N12+N2 2+Mo 2+M_ 2 (28)

is minimized, where Mo and ML_ are computed from initial and anticipated final

conditions, respectively. The omission of Q is heuristically justified by an argument

of the following type. Suppose the initial position is close to the eai-th and the final

position close to the moon. Initially the r 2 terms are small, so that to minimize

/- --_ _,_ small. Itwillthe r 1 terms (A + must nearly vanish in order to keep M °

then follow that Qo is also small. Evidently, of course, such a procedure will

mean that both Mf and Qf will become more or less large depending on the final

value of r 2. In effect, this will place a limitation on the duration of validity of

the two fixed center approximation.

The minimization of Eq. (28) will now be carried out. Since M and, for

that matter Q also, are independent of 6, partial derivatives of (_ with respect

to 6 involve only the N 1 and N 2 terms:

o" 5 N 1 5 N 2 oj4 _2 (26-2(1-6 )_5 5 - Nl,-5-_-+ N 2" _'_ -

1
which vanishes for 6 = 2" It now remains to minimize

1 w4_-2+ M 2+ Mf2(_i = 2 o

(29)

(30)

with respect to _, fl and 7. That is the equations

-_ .5 kl 5 Mf50"1 4 5M° - 0
5X - _ A1 _- + Mo" _ + 2Mf- 5x (31)

where x denotes (_, /3 and 7 must be solved for (_, fl and 7"
-$- -7-

=CLL+fl_+TL , A'I =_L+7 L

Recalling that

(32)
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one obtains the following:

- _A T,, -_--= 0, D_ _, DA = L (33)=

and from the first of Eqs. (25) evaluated at initial and final positions, respective-

Iv:

b M - ' 5M _(_p__._ -I_._, 5M- '

r I r 2 r I r 2 r I r 2

so that

_1 2 X__ _ - _1_'_-_:0_2 , :0, A;5-_--_i 2 (35)

_'-:--_.-a + £2+ ._. £2 F 1
_u o- _.# k 3

r 1 r 2 r 1 r 2 r I r 2

(36)

M .SM W2'f-/_+-_3)2fl, M,_
_-_= \ 3

r I r 2

5 M = i2 (_3 +-_3 _ _'
57

r I r 2

(37)

Substitution in Eq. (31) forx = _ and _ lead to

fl=7=0 (38)

while for x = a, one obtains

o_4 a£2+ 2a£ ,;2 ?2 [ ("-'1_ +"1_--3\ 3 + ("_t_____+ -t_L-\ 3 3 ]

rl0 r20 rlf r2f

(39)

1 3)\ 3 +

r20 rl0 r20

or

÷(, 1 3

rlf
3J + =0

r2f rlf r2f

Z
.i=0, f

3 3
rli r2i rl i r2i

+i 4[Z (-_--3 +--_3 ) 2 ] 2_

i=0,f rli r2i

(4o)
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Some comments on the value of _ may be made. If a close approach only

to the earth is made, that is if either rl0 or rlf is close to unity while r20 and

r2f are both large it is readily seen that

.I

which corresponds to placing the origin at the earth, while if a close approach onl_

to the moon is made

a _ _8___,
it+it

which corresponds to placing the origin at the moon. If a midcourse portion of

the trajectory is to be approximated so that none of the r's is near unity a will

be somewhere between these extreme values -- that is the origin will lie on the

line of centers between the earth and the moon. The origin is at the barycenter

for a = 0.

Integration of the Perturbation Equations

Once the point A has been determined the non-integrable terms in the

perturbation equations (23) and (24) will be ignored and the equations to be

integrated are

d _.x
d-t- RAE0 (t) = - R AE0 (t) (41)

d E

d-t" PAE0 (t) = - _ x PAE0(t) + o_26 (42)

= -_x (_AE0(t) + 5 _ x A >

where use has been made of the relation

x (_-x/_) =- 2

The integrals of these equations are, since 5 _ x A is a constant,

(43)
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RAE0(t) = MIt ) r{AE010) 144)

- ]PAE0(t)=M(t)I PAE0 (0) +5_x7_ -5_x7[ 145)

where the matrix M(t) is a rotation matrix through an angle -o_t about the

direction.

Referring back, now, to Eq. (16), it is seen that, in the rotating system,

a solution to the restricted problem valid from the initial time zero to some

time t, determined by how long the nonintegrable terms remain negligible, is

obtained by substitution of the expressions (44) and (45) for I{AE0(t ) and iSAE0(t)

in terms of the two fixed center problem. This means that in order to construct

the solution of the restricted problem in terms of that of the two fixed center

problem, it is necessary, for each time t of interest, to compute initial conditions

from_ __Eqs. (44) and (45), _nd then obtain the solution,evaluated at the time t, of a

two fixed center problem with these initial conditions. Thus if n points on the re-

stricted orbit are desired, n different two fixed center problems must be evalu-

ated.

One other point should be mentioned. The initial value PAE0(0) is to be

thought of as given by PAR0' which in turn is determined by the first Hamilton

equation (9) for the restricted problem evaluamo at time t---0:

PAR0 = RA0 + _x RA0 = RA0 (46)

where RA0 is the initial velocity in the non-rotating system, since the assump-

tion has been made that the rotating and non-rotating systems have parallel axes

at the initial time. Once PAE0(0) has been been determined PAE0(t) is given by

Eq. (45) and is to be interpreted as an initial velocity relative to A in the rotat-

ing system for the two fixed center problem, by virtue of the first of the Hamilton

equations (14) for this problem. Since in the rotating system the earth and moon

are fixed the initial velocity PAE0(t) is the same relative to any point in this

system. The two fixed center solution obtained from this initial velocity PAE0(t)

and the initial position RAE0(t) lead to position [{AE(t) and velocity PAE(t)

for the two fixed center problem, which are to be interpreted as position [{AR(t)

and momentum PAR(t) for the restricted problem in the rotating system.
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THEORY FOR THE INERTIAL SYSTEM

Derivation and Integration of the Perturbation Equations

A direct approach to an approximation of the solution of the restricted

problem by the two fixed center problem in an inertial coordinate system can

be developed as follows• Recalling the equations of motion for the restricted

problem in the inertial system with origin at the barycenter.

" R1 IR2

R=-_t 3 P
r 1 r 2

it is easily shown that the Hamiltonian is

1 _.a_
H = _- rl r2

This Hamiltonian has an explicit time dependence since r 1 and r 2 are distances

of the vehicle from the earth and moon which are assumed moving in known

orbits about the barycenter• The momentum P conjugate to position R relative

to the varycenter is just R, the velocity relative to the barycenter. The first

Hamilton equation expresses this fact, and the second, together with the first,

yields the equations of motion (1).

In this formulation two fixed points are selected for a fixed earth and a

fixed moon• The selection of these points is to be made so as to minimize the

non-integrable portion of the perturbation equations. Thus, denoting positions

relative to these fixed points by stars, the equations of motion are

r 1 r 2 \r_ 3 r 1 r_ 3 r 2

and the Hamiltonian is

(i)

(47)

(48)

1p2 _-P--_J_- + b_ r, 1 r _) + -- -- (49)H = _ r*l r*2 i r*2 r

The Hamiltonian can be expressed as the sum of two terms• The first is the

Hamiltonian for the two fixed center problem

1 p2 _M_ _i_'
HE = _ - (50)

r* 1 r*2

L
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and the second

H l=bL r-,1 r + u' 1 1. r* 2 r 2

is the perturbation Hamiltonian which may be written in the form

r*i0 rl0 r*20 r20

r*13

Rl'R13_+L_' R*2"R*23 R2"R2_}

r I -_ r*2 r2

dt

Perturbation equations for the initial conditions maynow be written as

d __

dt Ro(t) gradpo HI= 0-gradpo J {"'} dt

(51)

(52)

(53)

d f RI0*

d-TPo (t)= -gradRo HI = u _. ,3
rl0

RI0 _ R *31+
rl 0 _ \r20,3

R20 " dt
_+ gradRo_{ "'}

r20

If the terms involving the integrals are ignored in the perturbation equations, one

obtains

Ro(t) = Ro(0 )

P°(t) : PO(0)+ (t-to)L_ ( R10**3 R10,3_+/_ '(R20* R2031/"_
rl0 rl0 \r20 .3 r20

since the first of these equations implies also

Rio*(t ) = Rio*(O ) Rio(t) = Rio(O)

Selection of Fixed Positions for Earth and Moon

(54)

i= 1,2 (55)

It is not easy to see how the fixed positions for the earth and moon should be

selected so as to minimize the contribution of the integrals to the perturbation

equations (53): Examination of the equations of motion (48), however, suggests

that two cases should be considered as follows:
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1) Motion from earth towards moon; fix earth in its initial and moon in

its final position.

2) Motion from moon towards earth; fix earth in its final and moon in

its initial position.

The initial conditions for the two fixed center problem will then be determined

by the condition that initial position relative to the barycenter is unmodified and

initial velocity relative to the barycenter be determined from Eq. (54), with

momentum identified with velocity. The solution RE(Ro, Po(t),t) and PE(Ro, Po(t), t)

for the Euler problem will then be related to that for the restricted problem by

RR(Ro' Po' t)= RE(Ro, Po(t), t) (56)

PR(Ro ' Po' t)= PE(Ro, Po(t), t)

where R R and PR are to be interpreted as position and velocity relative to the

barycenter at time t.

RESULTS OF NUMERICAL COMPARISONS

Two methods of approximating the restricted problem by the two fixed

center problem have been obtained in the preceding two sections. In addition to

these methods, three others based on the formulation in the rotating system have

been considered. These last three methods are defined as follows:

A. The center of rotation is taken at the center of the moon if the portion

of a lunar trajectory to be approximated lies in "moon reference"; that is, if all

points on this portion are within about 9 earth radii of the moon. For portions of

the trajectory outside moon reference the center of rotation is taken at the earth.

The method has not been applied to portions of a lunar trajectory crossing the

moon's sphere of influence. Thus the values of _ used for method A:

!

= _-.D--, earth reference
_+_

= -P-- , moon reference
_+

are the two extreme values noted in the discussion following Eq. (40) for c_
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In addition, me parameter 6 is taken to be zero.

B. This method uses the value of _ determined by Eq. (40). The value

of 5 is taken to be one.

C. This method also uses the value of _ given by Eq. (40_, and 6 is set

equal to zero.

The two methods already derived are identified by

D. The method in the rotating system.

E. The method in the inertial system.

F. Finally, a sixth method was tried in which the effect of the perturba-

tion Hamiltonian in the inertial formulation was neglected. That is the initial

conditions for the two fixed center problem .are to be just the initial position and

velocity relative to the barycenter.

The comparison of the effectiveness of these methods was carried out as

follows. First a typical lunar _ajectory was integrated with the effects of mov-

ing earth and moon included, but with all perturbations due to sun, other planets,

oblateness etc. eliminated from the program. The integration was carried out

by the Republic Interplanetary Program using the Encke method. In this program

the earth is used as origin in earth reference aud the moon is the origin in moon

reference. Various points on this typical lunar trajectory were taken as initial

points and the two fixed center approximation was computed at various specified

later times. This necessitated the transformation of the initial conditions associat-

ed with the various methods (relative to the origin A for the rotating formulations

and relative to the barycenter for the inertial formulations) into equivalent initial

conditions relative to the earth or moon for portions of the trajectory in earth and

moon reference respectively. These transformations are given in Appendix I for

the rotating system and in Appendix II for the inertial system.
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The base lunar trajectory started at time t=0 from about 6590 Km from the

center of the earth, reached a perisel distance of about 4350 Km at 71 hr. and

reached a perigee distance of 8174 Km at 153.9 hr. The entry and exit from moon

reference occurred at about 58.7 hr. and 84. 1 hr. respectively.

Tables I, II, III and IV contain some typical results for the numerical calcu-

lations. Tables I and IV are for the earth-reference portions of the trajectory on

the first and last legs, respectively. Tables II and III are for moon reference

portions approaching and receding from the moon, respectively. The left hand

column contains the initial and final times for the portion of the trajectory to be

approximated. The deviations Ax, Ay and Az in kilometers for the various

methods are entered in columns headed by the corresponding letter. These

deviations represent the difference in the rectangular coordinates relative to

the reference body, the values predicted by the various methods being subtracted

from the values given by the base case. The column headed K, which appears

in Tables I and IV, give the deviations for the Kepler problem. The last column

gives the value of _ determined from Eq. (40) for use in methods B, C and D.

In Table V the x, y and z coordinates of the vehicle relative to the reference

body are given for the various times which appear in Tables I, II, III and IV. Also

given are the distances of the vehicle from the reference body in earth radii. The

distance of the earth from the moon is a little less than 60 E.R.

Some general conclusions on the relative merits of these methods may be

drawn. First it may be noted that methods A and C are practically the same ex-

cept for midcourse portions of the trajectory. The reason for this is that except

for such portions the value of _ is such that the origin is nearly at the earth for

earth reference and nearly at the moon for moon reference.

To summarize the results, then, for the methods described in this report

A is the best in moon reference.
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A and C are best for long range on the return leg.

B and C have a slight superiority for midcourse.

D is best on the first leg and is also best for short range on the return leg.

E and F are inferior almost everywhere.

The Kepler problem is superior to all of these methods for short to medium

range in the neighborhood of the earth and moon. It fails, however, for long range

and midcourse portions of the trajectory.

CONCLUSIONS

The results of the numerical comparison made in the previous section show

that the formulation in a rotating system is best suited to the approximation of the

restricted problem by the two fixed center problem. This is not really very sur-

prising because in a rotating system the earth and moon are automatically fixed.

This is achieved by introducing terms corresponding to the centrifugal and Coriolis

accelerations, which are interpreted as perturbations on the two fixed center

problem. In the inertial system, on the other hand, fixed positions for the earth

and moon had to be selected more or less arbitrarily. As a consequence the

perturbations from the two fixed center problem so selected depends on this

selection. Thus approximations have been introauced before the problem of

approximating the effect of the perturbations can even be considered. It would

therefore seem that a rotating system, in which only the problem of how to

treat the perturbations appears, should be the proper choice.

From the numerical results shown in the last section, it is evident that

the problem of treating the perturbations is far from an easy one. None of the

numerical results obtained can be regarded as satisfactory, or, in fact, as

fulfilling the expectations that one might have for the theory. Nevertheless,

there are a number of reasons for expecting that further development of the

theory should lead to useful and interesting results.
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If, for example, one considers the determination of the origin for the

rotating system, it is obvious that the method used is fairly crude, The sum

of squares of certain vectors appearing in the perturbation equations is minim-

ized. Evidently, if the sum were a weighted sum, different origins would be

obtained depending on the weighting factors used. It should, however, be

remarked that the present determination yields plausible results, e.g., in the

case of motion of an earth or moon satellite, one would certainly expect the

rotation of initial conditions implied by Eqs. (44) and (45) to be about the center

of the primary attracting body, or at least about a point very close to its center.

A large rotation about a point very far removed from the center would obviously

drastically distort what should be a stable orbit. Thus, the property that the

origin is closer to the earth or moon according as the portion of the restricted

problem orbit under consideration is closer to the earth or moon is a reasonable

one and shows that the theory is at least qualitatively correct in this respect.

For midcourse portions of the trajectory, one cannot use the satellite argument

to suggest the proper choice of the origin, though it might be conjectured that the

origin should vary continuously with the portion of the trajectory to be approximated.

It is possible to make a few remarks on the parameter 5. Reference to the

perturbation Eqs. (23) and (24) shows that if 5 = 1 the non-integrable terms are all

integrals from initial to final time, which therefore have zero initial value. It

would thus appear that for short range predictions, results for 5 -- 1, that is

for method B, would be superior to the others. This result has been observed

for some midcourse runs.

It may have been noticed that the perturbation term Ft • RA x PA in the

perturbation Hamiltonian H 1 (see Eqs. (15) and (20) could be treated in the same

way as the RA A 1 term. That is, a factor E could be introduced in the same

way as 5. This would change the rotation in the initial conditions, resulting

from integration of the perturbation equations, from an angle a_t to an angle

E wt. To actually introduce the _ and obtain a value for it in the same way as

for 5 would not be easy because the terms in (1-_) which would appear both

inside and outside the integrals would be far more complex and difficult to

treat than the corresponding terms in (1-5).
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To summarize, then, the various methods so far developed for the rotat-

ing system depend on the selection of four parameters _, fl, ), (determining the

center of rotation A) and 5. At this stage it appears that some sort of a param-

eter study using variations from the values of the parameters so far used, and

including also, perhaps, variations in the parameter ¢ defined in the last para-

graph, might well lead to some useful approximation formulae. There are many

ways in which such a study might be carried out, for example, by using weighting

factors with the vectors to be minimized, by a systematic variation of the param-

eters, or by the development of some sort of interation procedure. From the

above discussion, it would appear that B and _, should be close to zero, that

should be close to one, and that _should vary approximately according to Eq. (40).

Only for the parameter 5 is it difficult to estimate a value except for relatively

short range predictions for which one would expect 5 to be close to one.

APPENDIX I

TRANSFORMATION TO EARTH AND MOON REFERENCE

FOR THE ROTATING FORMULATION

In this appendix the results obtained for the formulation of the problem in

the rotating system are transformed so that a numerical comparison of the various

methods may be carried out using the Republic Interplanetary Program. The first

step is to interpret the results in a non-rotating coordinate system. To do this

one uses Eq. (12) to obtain RAR and RAR for the restricted problem in this system"

RAR = M-l(t) _tAR

RAR = M-l(t) PAR

= M-l(t) RAE (RAE0(t), PAE0(t), t)

= M-l(t) PAE (RAE0(t)' PAE0 (t)' t_

Thus PAE

and represents the velocity in the fixed system for the restrict ed problem.

(57)

is the velocity in the rotating system for the two fixed center problem
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It is now possible to rephrase the whole procedure in the fixed system.

procedure, so far, is as follows:

The

1. Obtain initial values _tAE0(O ) and PAE0(0) from Eqs.

2. Obtain RAE0(t) and PAE0(t) from Eqs.

3. Rotate RAE _RAE0 (t)' PAE0 (t)' t}and PA (_*AE0 (t)' PAE0 (t)' t)

by M-l(t) to obtain RAR and RAR.

Suppose that instead of carrying out steps 2 and 3, the earth, moon and

initial conditions are all rotated by M-l(t) about the origin A. None of the

essential characteristics of the two fixed center problem will be changed by

this rotation. The effect is that not only the final but also the initial values of

the coordinates and momentum components will be given for the fixed system,

and the coordinates of the earth and moon will correspond to their final positions.

That is one may obtain

RAR(Ro' Po' t) = _tAE / M_l(t) _AE0(t), M_l(t) PAE0(t), t)

PAR(Ro ' Po' t) = RAR = PAE _\M (t) RAE0(t), M-l(t) PAE0(t), t}

in terms of position RAE and momentum PAE of a two fixed center problem

computed in the non-rotating system with origin at A, with earth and moon in

their final positions relative to A, and initial conditions

RAE0(t) = M-l(t) RAE0(t)

RAE0(t ) = M-l(t) PAE0(t)

Since all comparisons of the results obtained by the two fixed center ap-

proximation with the restricted problem are made by numerical integrations of

these problems using the R.A.C. interplanetary program which operates with

either earth or moon as origin, depending on which is the primary attracting

center, it remains to transform both the initial conditions given by Eq. (59)

into a form usable in the R.A.C. program. The transformation on the initial

conditions are obtained by combination of Eqs. (59) with Eqs. (44) and (45)

and then using Eqs. (12)

(58)

(59)
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RAE0(t) = M-l(t) iM(t) _tAE0(°)I = I{AE0(O) = RA0

I_AE0(t ) : M-I(t) iM(t) (PAE0(O) ÷ 5_x A)- 5_x X_..

(60)

= PAE0(O) + 6 _ x A(o) - 5 _ x A(t)

= RA0 + 6 12.x A(o) - 5 _ x A(t)

If the initial conditions are in earth reference, that is, if R10 and R10

' andare given, it is necessary to find the modified initial conditions R 10

"RI0* relative to the earth dictated by Eqs. (60)• First, since RI0 is given rela-

tive to the initial position of the earth, and the procedure outlined above require

the earth fixed in its final position, one obtains

g

R A, = RI,, -.._.. L(O) - A(o)
_v J.v A_'

' ---_ L(t) - A(t)
= R10 _+D

(61)

or

, ' f

= )LL(t) - L(o)_

on making use of Eqs. (38) and (40) determining the point A•

one sets

R 10

To obtain " *
R 10

(62)

(63)

since for the two fixed center problem the velocity relative to the earth is the

same as that relative to A, while the time derivative of Eq. (21) gives

= -_ L (o)-_L (o)
RA0 RI0 U

(64)

so that, finally

", _÷_hi0 (, L (o) - _ _ _L (t) - L (o) _/ (65)
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!

Thus, using R10 and R' 10' a two fixed center problem is integrated, and

at time t the Rl(t ) and Rl(t ) obtained are to be interpreted as follows. The

Rl(t) is supposed to give position of the vehicle relative to the earth that would

have been obtained had the restricted problem been integrated. The Rl(t ) is

the velocity relative to a point fixed at the final position of the earth and is

therefore also the velocity relative to A. It is to be compared with the velocity

relative to the earth moving with respect to A in its final position obtained by

integrating the restricted problem. That is

I{1RF = I_IEF÷< +-_',+ c_)L (t)

Similarly if the initial and final conditions are in moon reference, one

obtains instead of Eqo (61)

RA0 = R20 +_ L(o) - A(o)

= R20 + L(t) - A(t)

or

for the modified initial position associated with time t.

and

R20 = R20 - _ -

In similar fashion

Since the moon is at the origin in moon reference, R2(t ) from the Euler problem

is the same as that for the restricted problem, in the range of applicability of

this approximation of the restricted problem by the two fixed center problem.

(66)

(67)

(68)

(69)

(70)
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APPENDIX II

TRANSFORMATION TO EARTH AND MOON

REFERENCE FOR THE INERTIAL FORMULATION

Again, to obtain a comparison from the RAC program transformations must

be made to position and velocity components relative to the reference body. To

explore the usefulness of this approximation the following four cases were consider-

ed, for the four portions of a circumlunar trajectory corresponding to the four

combinations of earth or moon reference with motion away from or towards the

earth

1)

2)

3)

4)

From earth up to the moon's sphere of influence

From entry into moon's sphere of influence up to perisel

From perisel up to exit from moon'.s sphere of influence

From moon's sphere of im'iuence towards earth

For these four cases the modification of initial conditions, the fixed position

of the moon relative to the earth, and the relation between the final condition for

the Euler and restricted, problems are summarized below, with Po(t) of Eq. (54)

identified with Ro(t), velocity relative to the barycenter.

I. Earth reference - earth towards moon

relative to barycenter: earth in initial position, moon in final position

relative to earth: moon at
/

_--_-, L(o)+ -_---, L(t)_+g

!

initial position R10 = R10

initial velocity

(71)

(72)

The first two terms in the initial velocity arise from the relation between velocity

' ---_, _L(t) - L(o)/_, (73)R20 =R20 /2+/2• . ,
R1%_ R20D]_' , L (o)+(tf_to)L u( o . +/2 .R10 =R10 -/2+/2 ,3

rl0 rl0 r20 r20
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relative to earth and velocity relative to the barycenter (i. e. the 1_ term in
O

Eq. (54). It will be noted that the p term in the square bracket vanishes because
• ]

of Eq. (71) so that the expression for R 10 thus becomes

., • , (R201 R2o' 
R 10 = R10 - _ _ (o) + /_'(tf-to) \ ,3 3J

r20 r20

(74)

and the last term is computed using Eq. (73).

The relations between the restricted and Euler solutions at time t are

given by

' ', t)R1R(R10, R10,t) = R1E(R10 , R10

/

!

R1R(R10, R10, t)= R1E(R10', R10 t) +-P---! L (t)
' /_+p

(75)

in which the last expression includes a second transformation of velocity relative

to the barycenter R1E to velocity R1R relative to the real moving earth•

II. Moon reference - earth towards moon

relative to barycenter: earth in initial position, moon in final position

/

relative to the earth: moon at --P---! L(o) + -_, L(t)
p+_ /2+/2

(76)

Initial position
!

R10 = R10

' - -g_-" ,(L(t) - L(o))R20 =R20 /2+g\ ""

(77)

(78)

/

Initial velocity R20 = R20 + -fl-- ! L(o) + /2
p+p

!

R29 R20 "-_'(tf-to) ,3 3 ff

r20 r20

(79)
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by the same analysis as for case I, except relation between velocity relative to

barycenter and moon is used. Relations among final conditions

R2R(R20, R20,t) = R2E(R20 R20 ,t)

• " " '," £(t)
R2R(R20,R20,t) = R2E(R20 R20't) /2+_

(80)

HI. Moon reference - moon towards earth

relative to barycenter: earth in final position, moon in initial position

I

relative to the earth: moon at _ L(t) + _ , L(o)
_+p_Tp,

(81)

Initial position

!

r_lO = _10 -_, ,,_p - _,1 /
(8_

Initial velocity

!

R20 = R20

'= (°) + (tf-to) [!l(_ ,3 /_ _ ,3
rl0 rl0 r20

(83)

r20

The first two terms in the initial velocity arise from the relation between velocity
I

relative to the moon and velocity relative to the barycenter. In this case the/_

term of the square bracket vanishes because of Eq. (83) so that Eq. (84) becomes

• , " + u _ (o)+u(tf-t o)( R10' R10 "_,3 3/ (85)
R20 =R20 _+U rl 0 rl 0

in which the last term may be evaluated using Eq. (82).

final conditions are

R2R (R20 , R20, t) = R2E (R20 R20', t)

I I

R2R(R20 R20,t ) = R2E(R20 R20 t)-_, L (t), , , _+_

The relations among the

(86)

(84)
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IV. Earth reference - from moon towards earth

relative to barycenter: earth in final position, moon in initial position

/

relative to earth: _ L(t) +--3_, L(o)
U #+P

(87)

Initial position R10 = R10 p

R2 0 1 = R2 0

!

• ,_" ' ( 1o R10)Initial velocity R10 - R10 - _ L (o) + bt(tf-t) \ ,3 3
rlO rlO

obtained as in the earlier cases. The relation among the final conditions are

RIR (R10, R10,t) = RIE (R10 , R10',t)

RIR (R10, RI0,t) = RIE (RI0 R10',t) + -P--, L it)
' t/+_

(88

(89)

(90)

(91)

•

•
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Table V. Lunar Trajectory - Position Relative to Reference Body

Time in Distance in
hours X in Km Y in Km Z in Km Earth Radii

Reference

Body

0

1

10

30

50

59

60

66

71

72

73

75

80

84

85

86

100

120

153

47 6300 1800 1.0

-19000 -8000 -10000 3.6

-45000 -100000 -46000 18.6

-53000 -210000 -82000 36.8

-51000 -290000 -103000 48.8

50000 22000 482 8.6

46000 20000 187 7.96

24000 7300 -1500 3.97

1300 -3700 -2100 .70

-5000 -3500 -681 .96

-10000 -2100 1080 1.62

-19000 1100 4450 3.0

-38000 9100 12000 6.4

-52000 15000 18000 9.0

-57000 -329000 -97000 54.5

-56000 -327000 -95000 54.2

-50000 -300000 -75000 48.9

-36000 -240000 -41000 38.4

2300 -13000 16000 3.3

Earth

Earth

Earth

Earth

Earth

Moon

Moon

Moon

Moon

Moon

Moon

Moon

Moon

Moon

Earth

Earth

Earth

Earth

Earth
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SUM MAR Y

This report presents, by request, details of the

development of the Convergence of the Series used in Hill's

Solution of the Three body problem, together with suggestions

for an investigation which may reveal sharper bounds on the

interval of convergence. Convergence in any interval was

the object of the initial investigations. The objective of

future studies will be to examine other methods which may

yield better bounds, and to develop some transformations

which permit comparison with known results,



Introduction.

known and given as,
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The equations of motion for this problem are well

(I) _ = 2_+x+F y = -2_+y+F
x y

where the "dotted" variables, here and throughout, represent derivatives

of that variable with respect to time,

(z) F = (1-_)[(x+_) +yZ]'Z +_[(x+__l)Z+yZ]-Z

and (x,y) are the coordinates ol the point of the smallest of the three

bodies (w._th mass zero) in a rotating coordinate system with angular

velocity unity. Here (I-_) is the mass of the largest of the three bodies,

while _ is the mass of the medium sized body, where 0 <_<i. The

origin of the system of coordinates is at the center of mass of the bodies

with masses _ and (I-_).

The equations of motion (I) are rewritten as

(3) %i = -2i_,+H v "_ = 2i_v+H u

I. Siegel, Carl Ludwig, Vorlesunger Uber Himmelsmechanik,

Springer-Verlag, Berlin (1956), pp.104.

Summer Lectures on Celestial Mechanics,

The Johns Hopkin Univ. , Md. (195 ?).
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when equations (1) are subjected to the transformation

_u = {x+_-l)+iy _" v = {x+_-l)-iy

whe r e

(4) H:-- uv+_-_(l-_){u+v)+ 2 Z_'_'(l-_) ,
u_v ÷ - ,4(I+_" u)(l+__'V)

Note that u = _ where here and hereafter, the "bar" designates the

conjugate variable. The series development of (4) in increasing powers

I

of _[ is

2

H = uv+_'_-(u+v)+2_ _ (I- Iz _w u+ -_" u2)(l- _

z

= Z_ + u+ + uv +''"

v+ -_ vZl+Z(uv)°_-+". •

t

where the omitted terms contain only powers of _ m_. Since _ is taken

to be small, the omitted terms are disregarded, and lnplace of(3),a

mutated system is considered, namely

3

.. 3( -_-(5a) u = oZih+ u+v)-u(uv)

2
• 3 -l-

(5b) "_= Ziv+ -f(u+v)-v(uv)



Solutions of (5a) and (5b) of the form
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(6) u : _I+AJ v = _[I+B]

are now to be investigated, -where

conditions

9 = _, _andy satisfy the auxilary

and hence _ =_o e_._=_ 'e-_t'0 where _ = 4 (_o_)-3 and _ = .

Futhermore,

(8)
co I=N

A : _ _ ak_ 3k+41
k=l I=-_

co I=N

3k-4/, B =k=l_ f=-N_ akr/_ 3k+4/_3k-4/

where the coefficients

the largest integer in

ak/ are assumed to be real and N = [3k/4], i.e.

(3k/4). These summations are abbreviated by

(9) A= _'akl_,kl B = _'ak,_f_kf

where _l,d = _3k+41 _3k-4/

positive integral values of k.

' means the summation is taken over all

At times not only is a summation taken over all

positive integral values of k, but also when k = 0; in this event, these
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summations do not bear primes. Also in this case
aoo

In passing, note that the series B can also be given as B -

For reference, the first of the two subscripts of _ kl and akl

the order of _kl or akF as the case ma 7 be.

With the use of (6), (7),(8), and the notation introduced in (9)

is defined to be 1.

Z' al<l_k,-b

shall be called

_,= +i_-3_ Zak, _,(2'-l)_k,

Equation (5a) contains the expression u(uv) , and (5b) contains

the expression v(uv)-_" . Under the suposition of (6), these take the form

utu,,)"z: _ l+A)-r(l+B)

I Z3--B+P(A, B)]

.i

where P(A,B) (I+A)"_'(I+B)"_r" _ F..3= -i+ A+ _--B, and

-6
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3 _7 3 1A+ _-B.(I+A[_'-(I+B -i+ Both P(A,B) and P*(A,B)where P*(A, B)

are power series in A and B starting with quadratic terms. These power

series yield series in _kl; f°r, pr°ducts °fthef°rm _kl_gh= _k+g ' l+h"

Furthermore, the coefficients of all such variables are polynomials in ars

with rational coefficents.

With the above evaluations and some algebraic manipulations, equations, (5a)

and (5b) become, respectively

_lOa)
L"_ [(Zl+l)"+ --_ ]ak1+ Tak,-1J ,/kl =

3 Zakl±2Z (21+l)al_ _k+l, I- "_ 3 Zak,_l_k+Z,l_l + P(A,B)

(lOb)
' 3 2 1

Zf"_ald+[(21-1) +-_']ak _,}_k/ =

_!  k+Z.l±ZZ(Z'-1)ak,-! _k+l,/ Z Zak,-!

Before proceeding with the problems presented in the material which is to follow,

a point of worthiness is to note that for all k the order of the ars in the polynomial

coefficients of the variables are of the lower order in the right members of (10a)

and (10b) than they are in the corresponding left members of these equations.

PROBLEM I: To show that ald and ak_l are rational numbers.

The major tool which is employed to give these results is mathematical

induction. To begin with aoo = 1, by definition_and of course, a rational number.
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The cases when k>0 are now considered. Assume that all apq are known

rational numbers for p = 0, 1, 2, " "', k-1 and for all permissible q corre-

sponding to each p, i.e. q = [3p/4]. With this hypothesis, all polynomials in

apq with rational coefficients and p <k are rational numbers. A comparison

of coefficients of _ ki on both sides of (10a) and (10b) yield

(lla)
3

[(21+i)2+ 1 ]akl + Z- ak, -g = Q(apq)

(11b) 3akt+[(2t_l)2 + 1_- ]ak, __ = R.(apq)

where R(apq) and Q(apq)

for p <k and all permissible q. Since each

R and Q are also rational.

Now two cases must be considered; the first of these is when t = 0. In thim

case, the left members of (11a) and (11b) reduce to the same quantity 3ak0.

Since the right members are rational members, then by mathematical induction,

each akO (k = 1, 2, "-') is a rational member.

The second of the two cases is when i_0. In this case, the value of the

determinant of the coefficients of (11a) and (11b) is 4/2(4_2-1_0. With this,

the solutions of (lla) and (llb) are

are polynomials with rational coefficients in the apq

apq is assumed to be rational then

(IZa)
_ 1 I 1 3,R(apq)takl. 412(412_1i ['(21-1) 2+ _ ]Q(apq)-
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and

(lZb) f 3 )1 [(Zi+1)2+ ]R(apq)- _- Q(apq)
ak,-t = 4/2(4iZ i)

Since the right members of each expression is a rational number when

p = 0, I, Z, "'', k-I and all permissable q, then akl and ak,-l are rational

numbers. Hence by mathematical induction all akl are rational numbers for

k = I, Z, 3, --. and alladmissable t.

PROBLEM II: The functions u and v of (6) are periodic.

From (6), (7), (8) and (9)

4 s _ 3k+41 3k- 4/

lak I _3k+4(I+ 0 _ 3k-4/= _ e 4¢0t+_ ¢0 0
(e4_¢) 21+I

_O_ 3 Hence u is a function of e 4¢0t Sincewhere _0=_( o)- •

e4_t= cos( % _o)- 3t_i sin( _o 9o)- 3t

then U is a periodic function of period 2n/ _o _o )-3"

the period becomes Z w_6 where p = [_o[-

With

An arguement entirely similar to this given for u shows that v is periodic and

of the same period as u.
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Since the independent variable t does not explicitly appear inthe differential

equations (5a) and {5b), then any real constant may be added to the variable t

without effecting these differential equations, i.e. a new independent variable

(t+constant) may be used instead of t. With this liberty, a suitable translation

can be employed to have P =_o = _o >0"
I
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CONVERGENCE OF THE SERIES USED IN HILL'S

SOLUTION OF THE THREE BODY PROBLEM

The convergence of the series

co I=N
3k- 41

{8 }* A = _ _ aki_ 3k+4_,] ,
k=l l=- N

co l=N
3k+41

B : _itz_ ak, T]
k:l l=-N

3k- 4_

is of prime importance and the establishment of this

convergence l= our uuj_._,,,..

We recall that the coefficients akl

rational numbers. Also, symbolically N

integer in 3k/4; i.e. , in standard notation,

These summations have been abbreviated,

were shown to be

is the largest

N = [3k/41.

(9) A V'= _-_ak_ k_' B = ak,-i _ k_

3k+4_I] _ 'where % k_ = _ 3k-41, and means that the

summation is taken over all positive integral values of k.

$ In order to avoid duplication and provide greater clarity

text references refer to Report No. 5 ana reference numbers

continue from that report. In case of repetition the notation,

nomenclature, and assumptions are identical.
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We now employ the Majorant method to show the series

of (9)to be absolutely convergent when I_I and I_iI are

sufficiently small. Since we already have, from (7), that

I_I : I_oI, iTII = I_oI, and l_oi = ]_oI, it follows that

cl31 : : I oI: i ol.

Thus,

small values of IE ol.

Referring now to

it is sufficient to establish convergence for sufficiently

(10a) and (10b), and denoting the

right members of (10a) and (10b) respectively by

(10c) Pkf _ kf and Pk, -f_ kf'

these become

(14a) { i_(2_+1)2+ 1 3 _'Pk_ r=k_-Z "lake+ --Zak, -_ }_ k_

• !

' 3 akf+[(2f_l)2+l __} : _ p(14b) _ {--_ "lak, _k_ k,-_ _k_

For f = o (14a) and (14b) each reduces to

{3ako }{ko _'' = Pko _ko' k i, 2, 3, • • •
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k = 4p or 4p+l, and for I = [3p+l[.

By using the absolute values of the members of (18a)

and (18b}, we have

3 3 [+[Ckl [(19a) [Pki[ < 2 121+I[" lak_l,i[+-_ [ak_2,1[+ _ lak_2,-i-I

3

(19b) IPk, _iI<2121-I [" [ak_l, _i[+ _ [ak_2, _i

We shall see momentarily that these [Pk, l[,

are bounds for the [akf[, [ak, _i[.

Under the assumption that _ =

of (8} are identical, for,

I+ 3 [ak - I+lc*2 2, l-1 k, -I [

[ek,

it follows that the series

under these condition, we have

and

ki = _3k+41_3k-41 = _6k

= _ 3k- 4_3k+4_ _6k
_k,-_ =

and setting {6 = _, we write

_' akl_ kA= =B

In this case, the required convergence is established by

comparing A and B with Z, where Z = 2' lake[

Since [Ekl[ = Ek, then Z = 2' ]akl[_ k"

The comparison which is used herein is now defined.
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Let ao, al,a2,...,a n , ... be arbitrary complex numbers

and qo' ql'q2' " "''qn' "'" be nonnegative real numbers.

Also let

(3O OO

A(z} : 2 anzn and Q{z) = 2 qn zn
n=o n=o

where lao] < q, IalI __<ql, ]azI _ q2' "''' IanI __<qn,''"

Then Q(z) is said to majorize A(z) or A(z) to minorize

Q(z) . This is indicated by use of the double symbol >>

to indicate "majorizes" and <<to indicate "minorizes",

and we write Q(z) >>A(z), and A(z) << Q(z), respectively.

(Seigel uses the ordering symbols >- and ,_ in the

sense that Polya and Szego use the symbols >> and <<.)

With this definition of A(z) and Q(z) and with the

restriction _ : _, it follows that A << Z and B << Z.

n

A property of majorants and minorants yields An<< Z

Also, when _ : rI, P(A,B) in (10a) takes the form

oo

P(A,A) = (I+A)-Z-I+ZA. Since (I+A) -2 = 2(-l)n(n+l)A n,

oo

then (I+A)-Z<< _ (n+l) Z n.

n=o

and hence

130

P(A, A) <<

n=2

But,

n=o oo

P(A,A) = 2 (-1)n(n+l)An'

n=2

(n+l)Z n = (l_z)-z_l-ZZ = (I-z)-Z(3zZ-zz 3)

<< 3ZZ(l- Z) -2
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whe r e

P4 = 412(412-1), P3 -- z 12_+1l. [(2_-1)2+ 1 ],

3 2 +1
P2 = _t(2_-l) 2 ]' P1 = 3JX_-lJ.

For # 0, we have

P2 6 PI 3P_3_3 8 0 <_ <-- 0 <_ <--

0 < 1'4 <_--, P4 5 ' P4 4 '

o< 9__L_<Z
4P 4 5

and

And thus there exists a constant c 1 such that

(21a) ]ak£ ] ._<c I []ak-l,_]+lak-Z,_l+lak-2,-£-ll+

[ak_l, _l[+[ak-2,-f[+[ak_2, __1] + dk_].

By the use of (16b), (19a) and (19b) it follows that there

exists a constant c 2 such that

(21b) lak, __1 _< c2[lak_l, __l+lak_2, __l+lak_2, f_l I+

lak_l,£1+lak_Z,_I+lak_2,£_ ll+dk£ ] (for I/O)

By choosing c = max {c 1, c 2} and noting that

dk_ = dk,__, we see that the right members of (21a) and (21b)

are symmetric in 1,-_ and furthermore, [ak_ l = tak,__[.
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i 1
Furthermore, << -- Hence,

(l-z)2 l-2z

3z 2
(20) P(A, A) << --

l-2z

In a manner entirely similar to this, P_(A,B) in (10b) has

the same majorant function as P(A,B).

Now, both the ICkl] of (19a)and the ]c_,_£I of (19b)

are bounded by numerical coefficients, say

(201,i.e. Jck_l_<dk_and Ic_,__l_<dk_-

dk_, given by

Whe ne ve r a

property has been established for an expression envolving

"f" and whenever we are then confronted with the same

situation envolving this expression but for which "-f"

replaces "_", we shall not pursue the study of the latter

case. It is convenient to think of the expression in

and its counterpart in (-f) as companion expressions

and, occasionally, for clarity, both of these are given.

From (16a) it follows that

laki I < 1 (t(2_-l)2+_'llPkil +-3 IP k I }
-- 412(412_1) 2 ,-I

and in view of (19a) and (19b)

P3 P2

lak_l --<--p41ak-l'_]+P4_lak-Z'_l+P2 lak-P4 2,-_-iI+

2h
Pl , + 9 9 l+____mdk_
p-_Jak-I-_J4P4lak-2,-_i÷4-_4lak-2,_-i3P4
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i I
In.the case when _ : O, (15) yieids lakol : -_-IPko •

Furthermore, from (20) and either (19a) or (19b), we have

[ako[ __<__1 [21ak_1,o[+32 [ak-2' °1+31ak-2'-1[+ dko]"

Again there exists a constant c such that

lako I __<c [lak_l, ° I+lak-2,ol+lak-2,-1 I+ dko]"

The right member here is a special case of (21a) and (21b).

Since _ = _6 > 0, then _k > 0 and, by using (21a) to form

a majorant for Z, we have

oo l=N oo zJ_N1 I_ k(22) 22 laki IEk << c {E lak-1, _ +

k=l 2=-N k=i _=-N 1

oo_ {_N 1. m_ ___N2 ,

L L lak_l, __ig k+ L /_ la

k=l _=_N1 k-2,

oo _N 22
k=l l=-N 2

i..k

Ig +

k=l i=-N 2

oo _N 2 I_ k+lak_2, ___llE k+ _ ]ak-2,-_

k=l _=-N 2

koo N 2 Ig +
2 lak_2, l_ 1

k=i _=-N 2

oo l=N
k

2 2 akg }
k=i l=-N

where N = [3k/41, N 1 = [3(k-1)/4l, N 2 = [3(k-2)/41 and

aki = 0 if k < 0.
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Each of the double summations in the right member of

(22) is either rewritten or bounded above and given in the

order in which it appears as,

oo _=Noo N 1 _k k
2 lak_l,. ] = laoolr + E E lakfl_ = _+_Z,

k=l _=-N 1 k=l _=-N

oo l=N
oo N 1 k

2 ]ak-1,-f]_k=laool _+_ 2 2 lak_]_

k=l f=-N 1 k=l f=-N

=_ +_z,

2 lak_2,._l_k= Z+ 2,_ ._=N_, lak_l_k=_2+_ z Z,
k=l l=-N 2 k=l 2=-N

oo f=Noo N 2 =
_, lak_Z,___ll_k__ < lao,_ll_Z+_ 2 _, _, lak_l_ k
k=l _=-N 2 k=l _=-N

oo _N 2 _k
2 lak_2,__ ] = F=k+F=k Z,

k=l _=- N 2

2
k=l _=- N 2

lak_2,.__l ]Ek .__<lao,-1 l_2+E2 z,

oo f=N 2
3Z

2 2 dk_k - I--SZ
k=l _=- N

lao,-ll_2 2+_ Z,

with these replacements, (22) becomes
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(23)z <<z_{(l+Z)_+[(1+lao_ll)+2z]_Z_ 3z2
2(i-zz) }

The coefficient lao,-11 was shown to be a rational

number. Let c 3 = max {1+1ao,_11,

I+Z << (1-2Z) -1, then (23) becomes

2 }. Since

(24) Z << c4(1-2Z)-1[_+_2+Z2],

where c 4 : Zc c 3. Herein _>0, then 1-2Z >>1-2(_+Z) and

_+_2+z <<_+(_+z)z

and (24) becomes

¢+(_+z) 2
z << c3i_zG+z ) ,

Furthermore

2

_+(_+z) G.
(25) Z+G << c31_2(G+Z )

Let V = Z+_. Then (25) becomes

V << c3_2_ v +_ =

c 3_+c 3vzG- 2_ v

I-2V

from which follows that
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V<<
(1+c3)_+c 3V 2

1-2V

With c 5 = max{l+c 4,c 4,2} then

2
t+X

(26) X <<
1-X

where X = c5V and t = c4_.

Suppose U is a power series in t without a constant

term and with positive coefficients satisfying U = (t+U2)/(1-U)

and that U converges for

we see that X << U. Also,

this end U = (t+U2)/(1-U)

1/(1-8t). Since I+8U <<I/(1-4U) 2, then, by substitution,

I+8U << 1/(1-8t) from which it follows that U << t//(1-8t).

But the series t//(1-8t)converges for ltl <l/a which

implies that U converges when It l <1/8. But, in turn,

X also converges when Itl <1//8 which leads to the

2
convergence of c5V when Ic_l <l/S. But v=_+z,

2
and therefore c5(_+Z ) converges when I_1 <l/8c 5.

A<<Z, then a converges when I_ol<l//ac_;this,Since

in turn, establishes the convergence of u = _(I+A) when

I_ol <l//8c25"

It] < r. Then using (26) above,

X converges for It] < r. To

is rewritten as I/(I-4U) 2 =
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Although the results presented above are sufficient to

establish convergence in the neighborhood I_I < __!_I

some of the mathematical techniques which were used do

not appear to yield the best possible refinements. In view

of the possible existence of interest in further refinement

it appears that additional investigations may be initiated by

pursuing some of the following suggestions.

(I). Examine the c 5, above, for the particular case

at hand.

(2). Examine the sequence of coefficients leading to

the c 5"

(3). Explore the possibility of a sequence of bounding

functions which yield a better bound for the neighborhood.

(4). Explore several summability methods applicable

to certain classes of functions.
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A MATHEMATICAL MODEL FOR AN ADAPTIVE

GUIDANCE MODE SYSTEM

By

R. E. Wheeler

SUMMARY

This report presents the development of a mathematical model

for empirical steering in support of the development of the Adaptive

Guidance Mode concept. The model was derived from the equations

of motion and contains arbitrary constants to be evaluated by some

numerical process.
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INTRODUCTION

The basic requirement for ideal guidance is to obtain a method
that utilizes the true current state conditions, as measured by instru-
mentation in charge, to provide a nearly instantaneous solution for the
description of the optimum path ahead. There is no method known to-
day that enables one to derive a closed solution for the system of equa-
tions that define in general an optimum flight path. Likewise the limi-
tation of the computer capacity on-board prohibits finding a solution by
numerical means.

At this time two statistical methods have been employed to deve-
lop the form of the equations to be mechanized in the missile-borne
computer for obtaining attitude commands. The approach taken in
references 3 and 4 was to use linear programming techniques to fit
linear combinations of known functions or ratios of such functions to a
set of tabulated values of the steering and cutoff functions. A large
number of trajectories are generated with realistic initial conditions
and the data points are selected from the step by step solution of the
trajectory.

In references 1 and 5 and 6 multivariate polynomial approxima-

tions by the method of least squares have been employed to obtain

functions of the state variables that approximate the thrust direction

angle and the time of cut-off. So far, the models employed have been

restricted to polynomials involving usually x, x, y, y, t, and F__.
nl

Various studies have been made and are being continued in an attempt

to delete the insignificant terms in this multivariate approximating

function.

The approach taken in this study consists of developing a function-

al relationship between the state variables at any time t. This mathe-

matical model will have three important properties. First of all its

form will not be assumed in any way. Thus when the answer is obtain-

ed it will indicate the form of the mathematical model. This function-

al relationship will be developed from the equations that define the

motion and the conditions that insure an optimum trajectory. Thus

the functional relationship obtained will satisfy all equations of motion

as well as the equations involving control functions. Finally the re-

lationship will contain a number of undetermined coefficients which can

be obtained by the method of least squares so as to approximate the

space of optimum trajectories, Obtained in advance.
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THE PROBLEM CONCEPT

In order to obtain some idea of the form of a mathematical model

that would define the steering function in terms of the instantaneous

state variableB,it is helpful to start with a simple problem• The re-

sults of this simplified study will be utilized to obtain a model for the

more complicated situation• The sample problem discussed in this

development was selected because closed solutions exist and thus

facilitate the derivation of the model•

The powered flight problem to be considered is defined as follows:

i. Motion is assumed to occur in a vacuum•

2.• Only two dimensional motion is considered•

3. Rigid body dynamics is neglected.

4. The earth is assumed to be flat and non-rotating.

5. A constant applied force (F) is considered.

6. The time rate of change of the mass (m) of the

vehicle is constant•

Langrangian Multipliers will be used to formulate the necessary

conditions for extremizing some variable such as propellant consump-

tion or burning time.

EQUATIONS DEFINING THE PROBLEM

The differential equations which define the motion of the vehicle

may be written as

• F
u = -- sinx

m

v = _F cosX -g
m

x = u

(i)

y = v
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The coordinate system x, y is chosen so that x is parallel to the

surface of the earth, and y is perpendicular to the surface. The dot

represents differentiation with respect to time. F is the thrust magni-

tude which we assume to be constant; g is constant and represents the

magnitude of the gravitational acceleration• The m and X represent

the instantaneous mass and angle measured positive from the upward

vertical to the thrust vector.

As shown in reference Z the function whose time integral is to be

minimized may be defined as G = 1 + _ kigi when ki are the unde-
i=l

termined Lagrangian Multipliers, and

gl = u - --F sin X = 0
m

• F
= v - -- cos X +_gz

m

g3 = u - x = 0

= 0

(z)

g4 = V - y = 0

g5 =r_n-k= 0

The Euler-Lagrange equations define necessary conditions for

minimization, namely that

a_ d i- aGl

0
where:

q = u, v, x, y, m, m,x, kl, kz, X3,Mt,X5 .

Applying the Euler-Lagrange conditions to the function G results

in the following system of equations:

• F F
u = -- sin X and _r = -- cos × - g (3)

m m

u = xand v = (4)

m = k (5)

k3 = 0, X4 = 0 or ks = a and k4
(6)

= c (a and c constants of integration)
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kl = k3 and kz = k4 or kl = at+b and

kz = ct+d where b and d are constants

kl kl

tan X = _ or sin X (k_ + X_.) l/z
kz

or cos X - --I/z

(7)

(8)

and

F
--Z (kl sin X + kz cox)<) = k5
m

(9)

The first integral for this system can be shown to be

kl u + kz v - X3 u - k4 v+ r_nks = co (lo)

ELIMINATION OF k 5 TERMS

Equation (9) can be simplified by replacing the trigonometric

functions by u and _ as defined in the equations of motion (3). This

result can be written as

m)_ = klu + kzV + kz g (ii)

Substituting equation (i I) in the first integral equation (i0) yields

mk's + mk_ + -kz g - k3u- k4v = co

Now integrating both sides with respect to t one obtains

mk5 = k3x+ k4y + cgt2
Z

+ (+dg +co) t + k (IZ)

where k is constant of integration.

Equation (IZ) divided by the first integral (10) and simplified by cross

multiplication, can be written as

m (klu + kz v - k3u - k4v - co ) =-m(k3x+ k4y

+ cgtZ +(+dg + co) t + k) (13)
Z

This expression involves 6 and v which must be eliminated in

order to obtain an expression involving only constants, kl , kz, and
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the instantanteous state variables. This expression will be integrated

with respect to t by using repeatedly the formula for integration by

parts• Substituting results (6) and (7) this relationship can be written

as

4r_jk3xdt+jk4ydyi = -m klu+ kzv- 2k3x- Zk4y- c o
L J

+ m[klx+ kz y - cgt3/6 - (dg + 2Co)tZ/z - kt + f (14)

where _ is the constant of integration. We notice that this expression

contains fxdt and fydt which must be eliminated sincemost of the time

it is not easy to obtain the instantaneous values of these two variables.

SOME RESULTS FROM EQUATIONS OF MOTION

The equations of motion (3) can be combined by division and by

substituting (7) to yield kz u - klv = kl g (15)

tz

kz u - kl v-k4 x + )%3Y " ag_/- + (bg) t + n (1 6)

A second integration leads to

xz x- My - z Mjxdt + 3ydt = + + nt + o (17)

_ydt in equa-where n and o are constants of integration. Solving for J
tion (I7) and substituting this result in (14) yields.

]A4k2 x - _I A4Y]- mk31 kl u + kz v

-2k3 x- 2k4y- Cot]+ m/_k3klx + kz k3y- cagt3/z

- (da+ 2cb) gtZ/z - Z coatZ/z - (ka + on) t+i-ZcoJ (18)

It should be noted that this result still involves a variable fxdt
which needs to be eliminated.

ELIMINATION OF fxdt

From equation (9) it follows that

kl d+ kz 4+ kz g = m_ .

Now in (10)

ks = (-klu- k, v+ x3 u+ k4 v+ Co)/_n
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so

% = -(×_u'+ ×2 <,_/m

Thus
k, u+ kz v + kz g = (-kl u'- kz :¢) m /r__

Now replace v by its value given in (15)

(×_u+ ×_ _ )/×_ = - (×_'+ ×2_;)m lm

Multiply both sides by kl and integrate

(_ + ×_) u - (z×, ×_ + z×_x_) x + (z×_ + z_ ) J_x dt

(- klm}lm LFklu + kz v- k3 u- k4v _ +

f_k3m+ k,m)/m_][k,u + kzv - k3 u- D,v]dt (19)

Now replace kl u + kz v by k 3 u + )_ v + co -m)uj in the first term on

the right side of (19) and integrate the second term.

(klz + kz ) u - {Zklk3 + Zkz k4) x + (Zk z + Z_ )/xdt =

(-kl mco)Irtn + mklkS + [(k3m + rnkl}ll;n]'

[klu+ kzv - Zk3 x- Zk4y]- Zk3 (klx+ kzy)

+ 6X3f(k3 x + X4 y) dt

From (1Z) replace inks to obtain

(×_+ ×'-,)u-(Z×1_3+z×_X_)x+(Z×_ +zx_)S×dt =

(-×imco}l,h+ ×i [X3x+ x_ y+ (cgt_)/z+(+dg + Co}t+ k]

+ [(×3m+ _,×i}/;_]'[×iu+ ×_ v- Z×3x- ZX_y]- Z×_(×,x+×,y)

+ 6×3f(×3 x + x_y)dt (ZO)

Substituting for /(k3 x + k_ y) dt as given in (ZO) in equation (14) yields

4 rtn (k_ + k_)fxdt = m [-Z(k z + k_)u + 4 (klk3 + kz k4) x

.+ (Zkl)(k3 x+ k4y+ cgt z/z + (+rig+ Co)t+ k_ -4X3 (kl x+ k_.y)

+ 3X3kl x+ 3kz k3y- X3 cgt3/z -3X3 (dg+Zco)tZ/z -3k3 (k}t

+ 3k31] -Zklmco + Z (k,m + mk 1)[klu+ kz v -Zk3x - Zk4y]

- 3k3m[klu + kz v - Zk3x - Zk4y - cot ] (2.1)

Equating equations (18) and (Zl) yields

(m/A)[-Zb Co] - Z×_ u + Z×I×,v + Z×__x

- ZkZ k3 y + (cb - da) gtz - Z co atz + Z (cn-ka) t + 3 a_-_

+ Zco + 2kl[cgtZ/z + (dg+ co) t + k] = 0 (2Z)
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Now grouping (ZZ) as an equation in kl and kz it may be expressed as

kl ['+ 2 ctv + Z dr+ cgt z + Z (dg + co) t+ k]

+ kz I-- Z ctu - Z du+ Z cx- Z ay] =

+ Z coat z - Z (cn-ka) t - 3 rd +_ -Zc
o

In equations (16) and (Z3) solve for k,

This gives

Z(m/rA) !.bco] - (cb-da)gt z

(z3)

and kz and substitute in(8).

ao (m/rA)u+ al uyt + az ut z + azuy+ a4 uxt

tan X = bo (m/r_)v+ bl vyt + bz vt z + b3 vy+ b4vxt

+ a5 ux+ a6u + a? ut + a8 ut 3 + a?tx+ a10ty + a11y.

+ b5 vx + b6v + b7 vt + b8vt 3 + bgtx + bl oty + bl 1 Y

tz tz z z+ a, zx+ a, 3 x+ ai4 y+ a15 y + a16x + a17xy

tz tz t4 . _.. t3 . _. _a # _,. _ jr _.+ blz x F b I 3 x + b14 Y + b15 . _,6 . _.7 _ • _,8_ . -,-9
(z¢

Since At = (m/l_) A -A (mo/r_) and

Bt z = B(m/r_) z - ZB(m/r_) (too/m) + B(mo/rn)"

where m = rat + m o. Thus equation (Z4) can be changed to

tan X
(m/rfi) a

- (mira)"

+ (m/r_)

+ (mlra)

A_ut + A, u + Az y + A3xJ _ . • -

[Bovt + B1 v + Bz y + B3x + B15 ta + B1 6£]

[A4ut + As u + A6y+ A7 x+ Asuy + A?uxj

_4vt + B5 v + B6y + B7 x + Bsvy + B9%tx + BI 7 tZ+B1stJ

x z Z+ A10uy+ A**ux+ A, zu+ A, 3x+ A, 4y+ Al5 +A16xy+ AiTy

+ Blovy + B**vx+ B, zv+ Bl3x+ B14y+ Blgt z + Bzot+ Bzl

This expresses the tangent of the thrust angle as a rational

function of the instantaneous state variable with forty undetermined

coefficients to be evaluated by some numerical process.
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THE APPLICATION OF LINEAR PROGRAMMING TECHNIQUES

TO RATIONAL APPROXIMATION PROBLEMS

Shigemichi Suzuki

SUMMARY

The purpose of this paper is to formulate linear programming algo-

rithms for approximating, in the sense of Tchebycheff, a function of

many variables by a ratio of linear forms over a finite point set. The

problem of obtaining the "simplest" approximating function is also
considered. Both standard and mixed integer linear programs arise in

the formulations.

I. INTRODUCTION

This paper describes the use of linear programming techniques to

approximate the steering and cutoff functions for the implementation

of the Adaptive Guidance Mode [I0, 12, 14]. This approach to the ap-

proximation of the guidance functions is basically a multivariate

curve-fitting problem. Values of the steering and cutoff functions
on minimum fuel trajectories are tabulated by solving the system of

differential equations for a space vehicle by step-wise numerical in-

tegration. The problem is then to find functions which approximate
the tabulated data over a finite point set.

In a previous report, [13], this problem was formulated with a

linear combination of known functions being considered as the approx-

imating function. In this paper the approximating function is a ratio

of linear combinations of known functions. The following two state-

ments of this general problem are studied.

Problem (a)

Given a fixed form for the ratio of linear combinations of known

functions, coefficients are sought such that the maximum deviation

over a finite point set is a minimum.
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Problem (b)

Given the class of functions which are the ratio of linear com-

binations of known functions, find the "simplest" function of the

class such that the maximum deviation over a finite point set is less
than a preassigned tolerance.

Section II of this report contains a detailed description of
Problems (a) and (b).

In Section III, Problem (a) is formulated as a mathemmtical pro-

gram_ing problem with quadratic constraints and a linear objective
function.

In Section IV, an algorithm for the solution of Problem (a) is
developed, and a brief discussion of a second algorithm is given.

Both use the simplex method iteratively. The first method is essen-
tially identical to that of L. H. Loeb [II].

Section V is concerned with a formulation of Problem (b). The

problem is formulated for a restricted case as a mixed integer program-

ming problem. This is an original approach to this problem.

Section VI, a combination of Problem (a) and Problem (b) which

will result in an "optimum" approximating function is discussed.

Section VII contains the conclusions of this report.

II. STATEMENT OF THE PROBLEM

A function f(_) whose value is known at n points, _i' _2'

..., zn, in a multi-dimensional space is to be approximated by a func-

tion R(_) in the class S whose elements are ratios of linear forms,

(l) R(t ) ,,

M
A.P. (_)
i I

i=O
N

BjQj (_)
J=O

where Pi and Qj are known functions of _ and the coefficients Ai

and Bj are unknown. An example of the known functions PI and Qj

would be the set of monomlals_
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m

i=l

If the distance between f(_) and R(z) is defined as

(2) 8(f,R)= max If( k) - R( k)I ,
igkgn

then the problem is to find thatfunction R(_) in S such that

(3) 8(f,R) = rain 8(f,R) - rain max !f(_) - R(_.k)l ,
S S Igkgn

or such that 6(f,R) is less than a prescribed positive number ¢O'

(a) An approximation is required in which M_ N, and possibly

some of the coefficients Ai, Bi, are known. Then R(_) is that
function of the form

M

Z AiPi (_)
i=O

N

_. BjQj (_)
j=O

which minimizes 8(f,R). In this case, 8(_,R) is the problem vari-
able which is to be minimized.

(b) An approximation is desired in which 6(f,R) does not exceed

a given tolerance eO. The given accuracy of approximation is accepted

even though this does not give the best possible fit. R(_) is the

"simplest" function of form (1) for which 8(f,R) < ¢0" The "simpli-

city" of R(_) is the problem variable which is to be minimized.

Clearly, the criterion for simplicity depends upon the nature of

Pi(_) and Qj(_). One such criterion might be the minimization of

the computation time for R(_).
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Problem (a) is an extension of the problem considered in Progress

Report No. 3.F137 An approximation of f(_) is sought among the _iven

class of rational functions such that the _axi_um deviation of R(z)

from f(_) over a finite set of points, Zl, z2, ... Zn, is minimum_

Let ¢* be the minimum of the maximum deviations. Generally, all the

coefficients, AI and Bj, are non-zero for the approximation with

maximum deviation ¢*. However, if the error tolerance ¢O of Problem

(b) is greater than ¢*, 8(f,R) g ¢0 might be satisfied without all

the coefficients A.l and Bj being non-zero. For example, suppose

eo _ max If_zk_,'_".
knl, ... n

Let B0 = i, AI " 0 for every i, and Bj = 0 for

R(_) = O. Hence, If(_k) - R(_k)l g ¢O for every k

j _ i; then

and 6(f,R) g ¢0"

III. FORMULATION FOR APPROXIMATIONS BY FIXED FORMS, PROBLEM (a)

Given

M

AiPi(_)

(_) R(_)- i=O P(_)

BjQj (_)
j10

with M and N fixed and A. and B. unknown, the problem is to
i 3

minimize

6(f,R) = max !f(zi) - R(_i) I .
igign

The problem is formulated as:

(5)
I Minimize e subject to the constraints

If(zk) - R(_k)1 g _ (k = l, 2, ..., n)
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Each constraint of (5) can be represented by a pair of inequalities

f(_k ) - R(_k) _ e
(6) -f(_k ) + R(_k) ,:,

(k " i, 2, ..., n) .

A n
Assuming that R(_) does not have a pole on the set of points {Zklk= I

and that P(_) and Q(_) do not have a comaon factor, then Q(_k ) > 0

or Q(_k ) < 0 for each k. The assumption that Q(%) > 0 for all k

will be made. Hence, Q(_k ) _ c > O, (k = I, 2, ..., n), for some

positive number c. Equation (6) can then be rewritten as:

(7)

r

t _+(++)Q(%)+ +Q(%)+
- .-Q(_k ) _ -c

(k " I, 2, ..., n) .

Substituting (4) into (7) the problem now becomes:

(8)

Minimize e subject to the constraints

M N N

- E PkiAi + Z ykqkjBj- _ qkjBje _ O
i=O J-0 J-0

M N N

i_O _iAi- _ YkqkjBj- _ qkjBje _ 0j-0 j-o

N

j=O qkjBj
-C

(k = i, 2, ..., n)

where Pki " Pi(_k)'qkj " Qj(_k ), and Yk = f(_k )" In matrix form (8)

is
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(9) {Miii*ze-Psubject to the constraints

+e 0 -_

0 0

where

p -

Q= (qkj)

Y = diag.

A= i

(k = i, 2, ..., n; i = 0, i, ..., M) ,

(k = I, 2, ..., n; j = 0, 2, ..., N) ,

(Yl' Y2' "'" '

B -! B0i

B1 --C

-C

(n elements)

Ai, Bj, and ¢ are the problem variables and are unrestricted in sign•

Pki' qkJ' and Yk are known values_ Actually, from (6), e can be shown to

be non-negative. This problem is a problem of mathematical programming

with quadratic constraints and a linear objective function. There are

no established methods such as the simplex method for linear program-

ming for solving this type of problem•

IV. METHODS FOR APPROXIMATING BY FIXED FORMS, PROBLEM (a)

A method for approximating the solution of Problem (a) by iterating

on c is now discussed. If ¢ is assigned some positive value eO,

the constraints become linear in the unknowns Ai and *B 4. Hence the

question, "Are there any approximations of the given type (4) with

6(f,R) less than CO?" can be answered by means of linear programming.

This problem does not have an objective function. Although some objec-

tive function might be considered, this is not necessary. The problem

is reduced to determining whether or not there are any feasible solu-

tions satisfying the linear constraints. If a solution does not exist,

the simplex method, or any version of it, will determine this. If a
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solution exists, the Ai and Bj are determined by the linear program-

,Ling routine as the values of the basic variables of the feasible solu-
tion.

A solution for (9) is obtained by applying the above method itera-

tively. If a solution exists for a value c0 of ¢, then the problem

is resolved for ¢ = eI < eO. If no solution exists for eO' then •

is increased. The solution for (9) corresponds to the minimum value of

¢ which makes (9) a feasible program.

A systematic method for iterating on ¢ follows:

CA) " ! I, "  o/2,i - o.
k-l,...,n

been shown that e = ¢0 yields a feasible solution.)

(It has

(B) Do the following and go to (C).

a) If i = O, or if ¢. is admissible (i.e., linear program

(9) with • = _i is feasible) and ei_ I is also admissi-

ble, let Aei+ I = A¢i and ¢i+I = ¢i - A¢i+l"

b) If ¢i is admissible and ¢i-i is not admissible 9 let

A¢i+l = Aei/2 and ei+l = ¢i " A¢i+l"

c) If ¢i is not admissible and ¢i-i is admissible, let

A¢i+ I = _¢i/2 and _i+l = ¢i + A¢i+l"

d) If neither ¢i nor ei_I is admissible, let A¢i+l = &¢i

and ei+I = ei + Aei+I.

(C) Solve the linear program (9) with ¢ = ¢i+I" Increase i by
i and go to (B).

Clearly linA¢ i - O. Hence e* can be obtained to an arbitrary accuracy.

The study of another iterative method for solving program (9) has

been initiated. It is hoped that this method will provide a better

rate of convergence and information about the closeness of the approx-

imation. A brief discussion of this method is Eiven in the sequel.

The following notation is introduced to simplify the dis=usslon.
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(lO)

M N

gk (A, B, e) " - Z PkiAi + _
i-o j.o

gn+k (A, B, _) =

L
g2n+k (B) - _

J--O qkjB_

N

ykqkjBj- Z qkjBj¢
j=O

M N N

Z PkiAi- Z YkqkjBj- Ei=O j-O j--OqkvB_i_i

Set _ to some positive value _0 and consider the following
problem.

(ll)

Minimize max [ gk(A, B, eO ), gn+k(A, B, _0 ) ]
k=l,...,n

subject to the constraints

_ g2n+k(B) _ c 70. (k = i, 2, ..., n)

where _ is a real number exceeding c.

Problem (II) is written as a linear programming problem as follows:

(12)

Minimize k

subject to the constraints

gk (A, B, _0 ) g

gn+k (A, B, eO) g

-g2n+k (B) g -c

g2n+k (B) _

(k = I, 2, ..., n)

Program (12) without the fourth constraint is equivalent to pro-

gram (8), and program (8) with e = _0 is feasible if and only if

g 0 for program (12) without the fourth constraint. The fourth

constraint restricts the class of approximating functions, but if
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is so chosen that the fourth constraint does not eliminate the best

approximation R*(_) from the class of approximating functions, then

the best approximation will be obtained by solving (12) by iterating

on e. This value of c will be denoted by _*. The optimum _ of

program (12) is a monotonic decreasing function of _. Let it be de-
noted by _(_). The optimum _, e*, satisfies

= 0 .

If •0 < e*, then _(e O) > O, and if ¢0 _ e*, then )(eO) _ O.

In the new method, upper and lower bounds for _* in terms of

A(eO ), c, and S are obtained. A better estimate for _ is then

computed from these bounds. By iterating on e in this manner, _*
can be obtained to an arbitral> accuracy.

One point needing further study is an algorithm for computing the

value of _*.
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V. FORMULATIONFORAPPROXIMATIONSWITHA GIVENTOLERANCE,PROBLEM(b)

In this section discussion will be confined to functions of a single

variable f(x) and the approximating functions will be restricted to the

class of rational functions ri.e., Pi(x) = xi (i = I, 2, .., M) and

Qj(x) _ xj (j = I, 2, ..., N)] . The following formulation of Problem

(b) with these restrictions is readily extended to the general case.

Given a class of approximating functions

(13) R(x) -

M
i

A.x
i-O i

N

Z B.x j

j-O J

and a preassigned error tolerance CO, determine the "simplest" form of

the approximating function R(x) satisfying

(lh) If(xk)- R( k)1 (k " I, 2, ..., n)

where x is the independent variable, (xk, f(xk)) , (k - i, 2, ..., n)

are the sample data points to be fitted, and [Ai]i. O and [Bj_ _0 are

the unknown coefficients to be determined. If eO < e* there is no

approximation satisfying the requirements, so we assume that e0 _ e*.

The following two criteria for simplicity are considered:

i) An approximation is defined to be "simplest" if the sum of the
number of non-zero terms in the numerator and the denominator
is minimum.

ii) An approximation is defined to be "simplest" if the sum of

the orders of the highest order non-zero terms in the numer-
ator and the denominator is minimum.

When one is interested in minimizing the storage locations for coeffi-

cients, i) is a better criterion for the simplicity. On the other
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hand, if one is interested in minimizing the computation time for R(x),ii)

is the better criterion. In most practical applications, the situation

will be more complicated and more elaborate criteria must be considered,

but slight variations of the following discussions can be expected to

be applicable to these more realistic situations. Therefore, the prob-
lem is formulated with i) and ii) as examples of the criteria for

simplicity.

i) Minimization of the Sum of the Numbers of Non-Zero Terms in

the Nm_erator and the Denominator.

First, the approximating rational function R(x) must satisfy the
cons traint sj

If(xk) - R(Xk)1 _ e0 (k m l, 2, ..., n) .

This requirement and the requirement that Q(x k) _ c (k = i, 2, ..., n)

with c > O give us the following system of linear inqualities, (9),

(15) [I oI°ooIIo[AI
where Pki = _' qkJ = _' and Yk = f(xk)"

Let L be a positive number which is large enough that the con-

dition IATI _ L and IBjI• _ L (i = O, l, ..., M; j = O, l, ..., N),

does not eliminate the simplest solution. The existence of such an L

will be discussed later. Since the values of AI and Bj are unknown,

a value for L must be arbitrarily chosen. For example, let L = lO10

when the other entries are of the order of magnitude 1.

No_ set

Ai = A + _ Aii

,

A_, ATI _ 0 ,

B_, Bj_O,

(i = 0, i, ..., M)

(j = O, I, ..., N)

Equation (15) becomes,
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(16) [-PP

0

P

-P

0

YQ

-YQ

-Q

+ eO ooliOo A +

A-

B+

B

0

0

where

A ÷ =
+

Ao

AM

A =
m

Ao

A{

B÷ = _-__] BO =

I
[3_ I

- I

I

" I

!

j

m

Bo

Introduce the non-negative variables _i(i = O, i, ._., M) and

Bj(j = O, l, ..., N) and construct the following system of linear

inequalities:

(17)

(18)
f
k

A+ A- > 0
_i L > + A.- ,1 1 1

B +.L _ . + B-. B- _ O
J J J ' j

i_ _0
1

I>_.>0
J

Restrict each _. and _ to integer values• Then from (18), each
l j

_. and _. is either 0 or 1. Since _Ail g At + A[ and
1 J 1 i

IBjl g B_ + B_ the conditions IAil g L and IB.I < L are satisfiedj ' j

when _i _ 1 and _j = 1.
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Lemma i, A_ _ O implies _i = i, and Bj _ 0 implies 8j = I.

= A+ Ai Since bothPro____f:Suppose _i O. Then by (17), 0 _ i + "

+ A+ and A- must be zero. There-
Ai and A_ are non-negative, both i l

+ i Bj = O.fore, Ai = Ai - A = O. By the same argument, = 0 if _j

Now consider the following linear programming problem:

(19)I

M N

Minimize u - Z _i + Z Bj = u(_ O, _i' "'" _M; BO' 81' "''' _N )
i=o j.o

subject to the constraints (16), (17), (18), where each _i and

_j is an integer.

Definition.

(M + N + 2)-_ple

ing properties,

A characteristic function with respect to R(x) is an

(So, Si , ..., SM ' to , tl, ..., tN) , with the follow-

i 0 if Ai = 0
Si = I if Ai _ 0

(i = O, i, ..., M)

= I 0 if Bj = 0
tj 1 if Bj _ 0

(j = O, I, ..., N)

Let C(R(x)) denote the characteristic function.

Let (A+, A-, B+, _, _) denote the 3(M + N + 2)-tuple,

+ + B_; BO, B_, -(A_, + AO, A_, AM; BO, BI, ..., "'', BN;A I, ..., ; ...,

_0' _i' "'" _M; _0' _I' "'" 8N )"

Lemma 2. If (A+, A-, B+, B-, &, _) is a feasible solution of

linear program (19) associated with a rational function
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M

i=O
R(x) =

J=O

then (_+, _[-, B+, B-, C(R_x)))

with the same rational function

where

is also a feasible solution associated

R(x), and u(_, 8) _ u(_(R(x))),

@

i •

_+ =

_V

_m m

um

Bo

mm

B1

f + - Ai
0

if A+ - Ai, > 0
2.

+ -A_<Oif Ai

-(A; -A._) if A+ - A.- < 0K_.= I I
+ -A_._0 if Ai 0

[ B; - Bj if B+ - B] m 0
* = J

% "to <o

-(B; - Bj) if BT - B- < 0

J

BJ " B+ - Bj _ 00 if j

Proof: Note that

+ A_, + andSince Ai, Bj,

A'+I - J['-I " A+I - Ai and _i+_ - B] = B+J - B-.3 "
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+- A_ = 0, then Ai 0 and A+ "If Ai = i = A_ = O. Similarly if

Bj+ - Bj = O, then Bj = 0 and B+ = Bj =0.j If _i -_i = 0

(17) will be satisfied with _i = 0.

(17) will be satisfied with _j = 0.

_j = 0 if Bj = 0, and let _i = _i

Similarly if

Let _i = o

then

+

then
if A = O and let

i

and let 8j = _j ifif Ai _ o

Bj_ O. ByLe_al, Ai_o (Bj# O) £mplies_i =I (Sj=1), and

hence _i = i (Bj = i) if Ai _ 0 (Bj _ 0). Clearly (_+, K-, B+, B',

_, _) satisfies (16_, (17), (18) and the requirement that _i and _j

be integers. By construction,

0 if Ai = 0
gi = i if Ai _ 0

0 if Bj_08j"

i if Bj 0

Therefore (_, _) = C(R(x)). Hence there exists a feasible solution

of the linear program (19) with objective function u(C(R(x))). Since

by Lemma i, Ai _ 0 (Bj _ O) implies _i = I (_j = i), it follows

that u(_, _) _ u(C(R(x))).

Theorem I. The optimum feasible solution of linear program (19)

gives the coefficients A. and B. of the rational approximation

R(x) which satisfies the preassigned error requirement

(2o) !f(xk) - R(Xk) 1 g c0 (k - i, 2, ..., n)

and the auxiliary conditions



302

)
f Q(xk) c (k - 1, 2, ..., n)

IAil _ L (i = O, i, ..., M)

IBjl _ L (J = O, i, ..., N)

and is the simplest in the sense that sum of the number of non-zero
terms in the numerator and the denominator is minimum, if such a solu-
tion exists.

Proof: Suppose Ai and Bj are coefficients of R(x) which

satisfy (20) and (21). Consider the set SR of all feasible solutions

of linear Program (19) which correspond to the same rational function

+ - Bj = Bj for+ - Am = Ai and Bj(i.e., which have Ai

i = O, I, ..., M and J = O, I, ...9 N). By Lemma 2, the value of

the objective function will be minimum in SR for that feasible solu-

tion in SR which has (_, _) equal to C(R(x)). Hence, if SR is

non-empty, there exists an element of SR with objective function

u(C(R(x))). The set of all feasible solutions of (!9) is

S = ISR _ R(x) satisfies (20) and _i)_. Minimizing u over S is

equivalent to minimizing u over the subset of S on which

u = u(C(R(x))) for each R(x) satisfying (.20)and (21).

M N

u= _ _i+ T 8j
i=0 J=o

and u(C(R(x))) is the sum of the number of non-zero terms in the nu-

merator and the denominator of R(x). Hence, by computing the optimum

feasible solution of linear program (19), the coefficients of the simp-

lest rational approximation, in the stated sense, which satisfies (20)
and (21) is obtained.

Linear program (19) is a mixed integer program in which some of

the variables in the linear inequalities are restricted to integers.

R. Gomory r91 has constructed a finite algorithm for the solution of
this type of problem. It is a modification of the usual simplex method.

One of the disadvantages of formulation (19) is that it does not

always give the simplest rational approximation because of the additional

restrictions IAil _ L and IBjl _ L.
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First observe that, in general, there is more than one solution
which satisfies (20) and (21) and minimizes u. For example, it may
be possible to change the values of the coefficients in the rational
approximation obtained from an optimum feasible solution of (19) so

n
that a smaller maximum deviation at the set of points {XkBk= I is ob-

tained and the objective function is unchanged. Therefore there exists

a set of (M + N +2)-tuples. __(A.B )_ ..whichgives the simplest rational

approximation satisfying 'f(xk) - R(xk)___< ¢0 and Q(xk) C

(k = I, 2, ..., n). Some of the Ai's and Bj's might be zero. For

each element (A, B)p let

{IA01, IAI!, ...,IA !;!BOI,IB11, ..., •

This gives a set of non-negative numbers {_. If the greatest lower

bound of _K_ exceeds L, then the restrictions, L _ IAit and

L _ IBjl, eliminate the simplest rational approximation from the set

of feasible solutions of linear program (19). In this case, the opti-

mum feasible solution of program (19) gives us a rational approximation

with more terms than the simplest approximation. Therefore it is de-

sirable to develop some method which can be used after solving program
(19) to test whether the value of the objective function decreases if

L is increased by an arbitrary amount.

ii) Minimization of the Sum of the Orders of the Highest Order

Non-Zero Terms in the Numerator and the Denominator.

Introduce the new variables _ and _ and construct the follow-

ing program

(23)

Minimize h = _ + _ = h(_, _)

subject to the constraints (16), (17), (18), _i and _j

are integers, and

(22)

The differences between linear programs (19) and (23) are the forms of

the objective functions and the additional constraints (22).
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Following are someof the properties of program (23).

Lemma 1 holds for program (23).

Lemma 3. If (A+, A-, B+, B-, _, _; _, _)

corresponding to a rational function R(x),

is a feasible solution

M
,_rA+ - - iA.)xZ

R(x) _ i--O _ i
N

<B+ -B )xJ
j=O 3

then (A+, A-, B+, B', C(R(x)); _, j) is also a feasible solution cor-

responding to the same rational approximation R(x), and

h(_, g) m h(l, j) ,

where _+, _-, B+, B_ _, and _ are as defined in Lemma 2 and _ is

the highest index for which A i _ 0 and S is the highest index for
which B. _ O.

3

Proof: As shown in the proof of Lemma 2, _+, _-, _+, _-, and

C(R(x_-_tisfy (16), (17), (18) and the integer requirement for _i

and _.. The constraints {22) will be satisfied if _ = _ and
J

= S. Hence (A+, A', B+, BI C(R(x)), i, j) is a feasible solution

of linear program (23). This solution corresponds to the rational

function R(x) because A. = AT - A_ = _ - _ and
i I i i i

B_ - B? = B: - B?. If A. _ 0 and B. _ O, then i g_ and
Bj= J J J J i j

j _ _. Hence

and

h(_, g) >_h(i, j) ,

h(_, g) _ h(i, _) .
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Theorem2. The optimum feasible solution of linear program (23)

results in the coefficients Ai and Bj of the rational approximation

R(x) which satisfies the preassigned error requirement,

(24) If(xk)- R(Xk)1< (k = I, 2, ..., n) ,

the auxiliary conditions,

(25)
Q(xk) > c
IA.I _L

i

.tBjl _ L

(k = I, 2, ..., n)

(i = O, I, ..., M)

(j = 0, l, ..., N)

and is _h_ s_mp!est _ +h_ _,q_ +h=+ +_ _"m _ ÷_ _rs _f +_o __.-
est order non-zero terms in the numerator and the denominator is a mini-
mum, if such a solution exists.

Proof: Suppose _ and Bj are coefficients of R(x) which sat-

isfy conditions (24) and _5). Consider the set SR of all feasible

solutions of linear program (23) which correspond to the rational func-

tion R(x) (i.e., A_I " A_ = A.I and B+j- B_ = B.j for

i = O, i, ..., M and j = O, I, ..., N). By Lemma 3, the objectiVe

function will be a minimum in SR for that feasible solution in SR

for which (_, _) = ([, j); moreover, if SR is non-empty, there exists

an element of SR whose objective function is h([, _). Therefore

minimizing h over all the feasible solutions of linear program (23)
is equivalent to minimizing h over a subset of the feasible solutions

for which (_, R) = (_, _). Since h = _ + 8, h([, j) is the sum of
the orders of the highest order non-zero terms in the numerator and the

denominator. Therefore by computing the optimum feasible solution of

linear program (23), the coefficients of the simplest rational approxi-
mation in the stated sense satisfying (24) and (25) are obtained.

Linear program (23) is also a mixed integer program and Gomory's
algorithm can be used to get an optimum feasible solution. Formula-

tion (23) also has the disadvantage that it might not give the simplest
rational approximation desired if L is not large enough to include

the set of coefficients A and B of the simplest approximation in
l j

the set of all feasible solutions of linear program (23).
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iii) Other Criteria for Simplicity.

a) As a variation of criterion (i), one might wish to avoid high
order terms in the "simplest" approximation. This problem can be solved

and _ in the objective function by
by multiplying the variables _i j

appropriate weights _i and 0j, and solving linear program (19) with

the new objective function

M N

u -- Z wi_ i + 2
i=O j=O _j_j

For example, mi m i and oj = j are possible choices for wi and

0j.

b) When one wishes to minimize the larger of _ and _, a new

variable 8 can be introduced, the new constraints, _ _ 8 and

_ 6, added to linear program (23) and the objective function can be

replaced by h _ 6.

VI. COMBINATION OF PROBLEM (a) AND PROBLEM (b)

As suggested in Section V of this parer, the solutions obtained

from linear programs (19) and (23) might be improved and a smaller max-

imum deviation than eO might be obtained. By solving linear program

(19) or (_), the form of the "simplest" rational approximation is

found. This defines a subset of [Pi(x)_=O and [Qj(x)_= O
which is

sufficient to approximate f(x) with the required conditions. Now use

instead of [Pi(x)]_=O_ and [Qj(x)]_=O_ and solve problemthis subset

(a) starting with e = eO" Since eO is admissible, ¢* _ ¢O" The form

of the approximating function is unchanged, but the coefficients Ai

and Bj are refined, in general, and give a smaller maximum deviation

than the rational approximation obtained from (19) or (23). The impro-

ved solution thus obtained is @ptimum in the sense that a simpler approx-

imation cannot be obtained without increasing e0 and, in general, a

smaller maximmm deviation cannot occur without increasing the complexity

of the approximating rational function.
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VII. CONCLUSIONS

The problem of approximating a function of manyvariables in the
sense of Tchebycheff by a ratio of linear forms over a finite set of
points has been studied. Twoproblems have been posed.

Problem (a): Given a ratio of linear combinations of knownfunc-
tions, unknowncoefficients in this ratio of linear forms are sought
such that the maximumerror of the approximating function is minimized
over the given finite set of points.

Problem (b): Given an error tolerance, the "simplest" approxima-
tion satisfying the tolerance at the given finite set of points is sought.

Problem (a) is formulated as a problem of mathematical programming
with quadratic constraints and a linear objective function. Twomethods
of solving this problem are being studied. In both _ethods the error is
considered to be a parameter and the constraints are linearized. The
s_mplex -^_^_i.L__i_ _o_-employed iterati_ly to determ_ue the minimax error.
These two methods have not been tested numerically, and a comparison
of these methods with other methods [1, ll] has not been made.

Problem (b) is formulated for the case where the approximating func-
tion is a rational function of a single variable and the criterion for
the simplicity is either the minimization of the number of non-zero
terms in the approximation or the minimization of the sumof the orders
of the highest order non-zero terms in the numerator and the denomin-
ator. For each case, the problem is reduced to a mixed inteEer program.
R. Gomory's algorithm may be used for solving this problem. An exten-
sion of this formulation to a rational approximation of manyvariables
is immediate if the samecriteria for simplicity are used. This formu-
lationhas not been tested.

Further work should include the completion of the development of
the second algorithm for solving Problem (a). The behavior of the ap-
proximating functions should also be comparedwith that of the guidance
functions between the sample points. The selection of sample points is
another important topic for consideration. The relationship between
the methods described in this report and those for approximating con-
tinuous functions by rational functions over a whole interval [3, 4]
should also be investigated,
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SINGULAR EXTREMALS IN LAWDEN'S PROBLEM

OF OPTIMAL ROCKET FLIGHT

Henry J. Kelley*

Analytical Mechanics Associates, Inc.

Abstract

The problem of optimal rocket flight in an inverse square
1,2

law force field has been studied extensively by Lawden and

3
Leitmann. Periods of zero thrust, intermediate thrust, and max-

imum thrust are possible subarcs of the solution according to

analysis of the Euler-Lagrange equations and the Weierstrass nec-

essary condition. Arcs of intermediate thrust have recently been
4,5

examined by Lawden; however, the question of whether or not

such arcs may actually furnish a minimumhas been left unresolved.

The present paper derives the singular extremals of Lawden's

problem by means of the Legendre-Clebsch necessary condition

applied in a transformed system of state and control variables.

These are obtained as circular orbits along which the thrust is

zero and intermediate thrust arcs as found in Lawden's analysis.

Since these solutions satisfy only the weak form of the Legendre-

Clebsch condition, i.e., the extremals are singular in the trans-

formed system of variables, the question of their minimality re-

mains unanswered.

* Vice-President. This investigation was performed while the writer

was employed by the Grumman Aircraft Engineering Corporation.
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Introduction

The problem of optimal rocket flight in an inverse square

law force field has been investigated by Lawden 1'2 and Leitmann. 3

Although considerable progress has been made in the'study of prop-

erties of the solution, a question remains as to the possible

appearance of subarcs of intermediate thrust.4'5 Such arcs are

among the singular extremals of the problem, in classical varia-

tional terminology, and are resistant to analytical efforts owing

to the unavailability of a general theory applicable to singular

cases.

In the present paper, we first present a brief development

of the Euler-Lagrange equations and the Weierstrass necessary

condition along the lines of previous investigations, and then

proceed to an analysis of intermediate thrust arcs.

Lawden's Problem

The equations of motion for a rocket in two-dimensional flight

are given by:

T
u=--sin0+Y

m

T
v = -- cos _ + X

m

(1)

(2)

y ----U (3)

X = V (4)

T
m _ _ m

C
(5)
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Here y and x, Cartesian coordinates in an inertial frame, u

and v, the corresponding velocity components, and the mass m

are the state variables of the problem. The control variables

are the thrust magnitude T and the thrust direction angle 8.

The former is subject to a constraint of inequality type

0 <T<T,

corresponding to an assumed capability of throttling the rocket

motor over a thrust range of zero to maximum thrust T. The

gravitational force components Y and X are functions of the

position coordinates and, in the most general case, of time as

well. In the present analysis we will be concerned with the case

of an inverse square law gravitational field.

Stated in Mayer form, the optimal rocket flight problem is

to determine a solution of Eqs. (1)-(6), subject to appropriate

boundary conditions, which furnishes a minimum of a function P

of the state variable terminal values and the terminal time. In

terms of the generalized Hamiltonian function

_p q_

H = % _ sin e + Y) + %v(m cos 8 + X) + % u + _ v + _ (-c)u y x m

The Euler-Lagrange equations for the problem are given as:

u bu y

= bH
v" - _v = " %x

= b__HH= _ bY bx
y " by (Xu _y + Xv _y)

(6)

(7)

(8)

(9)

(lO)
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(ii)

_m-- _H
m

sin_ +
v

cos _) ,

in which the functions

Lagrange multipliers.

_u' Xv' %y' %x'
and are the usual

m

The control variables T and 8 must satisfy the relation

_(T*, 8*) > .(T, 8)

for all admissible T , 8 ; which is to say that T and 8

provide a minimum of the function H, subject to Eq. (6). This

is the extended form of the Weierstrass necessary condition as
6

derived by Pontryagin et al.

A minimum of H is attained for

(12)

(13)

U v
sin 8 = cos 8 = (14_

J%u 2 + %v 2 ' J%u2. + %v2'

_i_2+_2' ____m
T = 0 for P = mv u v c > 0 (15)

m

T = T for __[_2 2"P= _ +% ___mmu v c <0 (16)

In the case p = 0 the function H is not explicitly dependent

upon T and the thrust magnitude is not determined by the Weier-

strass necessary condition.
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Portions of a solution of the Euler-Lagrange equations for

which p vanishes identically, i.e., over a finite time interval,

are known as singular subarcs according to the terminology of the

classical theory, the criterion being the vanishing of the deter-

minant

_T 2 _e_T

_2H

_T_e _e 2

(17)

This definition applies only if the function

its minimum,

-0.

H is stationary at

(18)

The Intermediate Thrust Subarcs

The possible appearance of singular subarcs in a problem is

accompanied by considerable analytical difficulty. There is no

powerful general method available for determining these subarcs,

or whether they may furnish a minimum even in the local sense,

i.e., over short intervals, or in what manner they form segments

of the minimizing arc. Valuable insight into these questions is
7

provided by the Green's Theorem method of Miele, which, however,

is severely restricted in number of variables, as regards its

applicability.

For the problem presently considered, Lawden has examined

arcs of intermediate thrust satisfying the Euler-Lagrange equa-

tions and the Weierstrass necessary condition. 4'5 His results



315

indicate the existence of a family of such intermediate thrust

arcs, including a spiral corresponding to the case H = 0, ana-

lyzed in some detail. The question of whether or not such arcs

may actually furnish a minimum, however, has been left unresolved.

Zn the present analysis we pursue an alternate approach to the

intermediate thrust arcs.

We now introduce new variables _, _, T, _, V replacing

u, v, y, x, m according to the transformation

1
- y sin e +x cos e +:(u cos e - v sin e) (19)

t?0%

T - Y cos e - x sin 0

¢ - y sin 0 + x cos e

V" - c lnm .

(21)

(22)

(23)

It is readily verified that this transformation is nonsi=Igular

by the nonvanishing of the Jacobian determinant

_(v, B. 7. ®. V) -_ _ 0
A = B(u, v, y, x, m) = o.m "

By a formal process the equations of state in the new system

of variables are obtained as:

- T_+ _(Ycose - x sin0)- _(_- _)

(24)

(25)

= Y sin 0 + X cos 0 + o_2(_ - ¢) (26)
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¢=IB+T_+V

= _ ffi eV/C T

(27)

(28)

(29)

(30)

(31)

It has been tacitly assumed in the course of the manipulations

leading to Eqs. (25)-(31) that the steering angle e is twice

differentiable, i.e., that the derivatives e = _ and e =

exist. Examination of Eqs. (8)-(14) indicates that such an

assumption is Justified if the gravitational force components Y

and X possess first partial derivatives, except for a finite

number of points along the trajectory, corresponding to thrust

direction reversals, at which % and % vanish simultaneously.
U V

We exclude such reversal points from the segments of arc analyzed

in the following.

It would appear upon first inspection of the Eqs. (25)-(31)

governing the new variables that an unwarranted increase in com-

plexity has been realized• Our motivation becomes clear, however,

when it is observed that the variables T and V appear only in

Eqs. (28) and (29), and that as a consequence of this, the multi-

pliers %¢ and %V vanish along the singular subarcs. Means of

synthesizing transformations having this property will be dis-

cussed in another paper presently in preparation•

If we consider a segment of arc of intermediate thrust, i.e.,

over which the strict inequality in (6) holds,

0 <T <T (32)
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T + 6T = T(t) + eq(t) (33)

will also satisfy Eq. (32) if the magnitude e of the (otherwise

arbitrary) thrust variation is taken sufficiently small.

Evidently if wu restrict attention to small variations in

T, V, and _, we may regard the variable _ as a control varia-

ble over an intermediate thrust arc,,as implied by the vanishing

of the multipliers %_ and kV. We note that the coefficient of

T in Eq. (29) and the coefficient of V in Eq. (28) never vanish,

and accordingly, that an admissible variation in thrust 6T may

be found which produces an approximation as close as one wishes
@

to an arbitrary variation 5_(t), provided that the magnitude of

b# is sufficiently small. With _ is the role of control var-

iable and small variations assumed, the intermediate thrust arcs

must satisfy the necessary conditions for a weak relative minimum.

The Euler-Lagrange equations for the system (25), (26), (27),

(30), (31) are

_ _H __ 2 (34)

_13 ffi -_'_= 0

_T = _ _ = _ %_[w + I _(y cos e - X sin e)]

- h_ _(Y sin e + X cos e)

%e" " bethffi_ k_ _(Y cos _ - X sin e)

- k_ _(y sin e + X cos e)

(35)

(36)

(37)
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_D

- 2;_¢scv(,- ,) - _T(_/- 2*) - he
(38)

+! a ,,, 1 _'_I-_2_v _"-_ cos e - X sin e) +

+ _(Y sin e + X cos e)] - 2ATe- 0 (39)

. _ _ (_ - o) + _ . 0 . (40)

The Legendre-Clebsch necessary condition for a weak relative

minimum is

_2R 5_ 2 + 2 _2R 5_5_ + _2B 5_ 2 > 0

_2 _ _2 --

for arbitrary De, 5_. Positive semidefiniteness of this quad-

ratic form requires that

(4f)

(42)

__.__2H

_ 2 > 0

2

(_2H .

_>o

(43)

(44)
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We have that

_2. _ _- sine + x cose)+ _ _2
_¢2 " _2 (Y _ _--_(Y cos e - X sin e)

(45)

(46)

(47)

From Eqs. (42)-(44) and Eqs. (45)-(47) it follows that X_ - O.

With this simplification and the elimination of the multi-

plier variables from the Euler-Lagrange equations (34)-(40), we

arrive at

+ "0 (48)

_.+_z = o
_7 (49)

._+2- (x____. y_) z-0 (50)

in which

Z -- Y sin (9 + X cos (9 (51)

is the component of gravitational force along the thrust direc-

tion.
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In the case of an inverse square law gravitational field

y = - k7 x = - kx
3/2 ' 3/2

(x2 + y2) (x2 + y2)

(52)

Eqs. (48), (49), and (50) become

2 k(2¢2 . _,2)
+ =0

(,2 + ?2) 512

(53)

3k_T
-_ + 5/2 = 0

(,2 + 2)

(54)

2 k I- 3/2 _ = 0 .
(,2 + 2)

(55)

If c_ is eliminated between Eqs. (53) and (55), we obtain

I
¢| _. 3?k

I 5/2
(,2 + 2)

=0 (56)

The vanishing of the first factor ¢ = 0,

leads to _ = 0, _ = constant and

circumferential thrust,

(57)



J 2'where r = 2 + ? is the radius.

quency for free fall circular motion.
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This is the orbital fre-

The vanishing of the second

factor indicates that Eq. (55) is satisfied identically along so-

lutions of Eqs. (53) and (54), which are the equations of Lawden's

intermediate thrust solutions (Ref. 5), although in rather differ-

ent notation.

CONCLUDING REMARKS

The present analysis amounts to little more than an alternate

derivation of Lawden's results on intermediate thrust subarcs,

similarly inconclusive on the question of minimality. This is a

result of the singular extremals of the original problem being

also singular in the transformed system of variables, i.e., only

the weak form of the Legendre-Clebsch condition in these variables

is met. The most suggestive feature of the analysis is the van-

ishing of two of the multipliers associated with the new varia-

bles. This would seem to indicate a possibility of dealing with

the problem in a state space of reduced dimension.
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A TRANSFORMATION APPROACH TO SINGULAR SDBARCS

IN OPTIMAL TRAJECTORY AND CONTROL PROBLEMS

Henry J. Kelley*

Analytical Mechanics Associates, Inc.

ABSTRACT

Mayer variational problems in which the control variable appears

linearly are considered and a canonical form sought for the system equations

which is somewhat analogous to that adopted by Wonham and Johnson for

linear constant coefficient systems with cost functional quadratic in the state

variables. A means of synthesizing a transformation to the canonical form

in terms of the mutually independent solutions of a first order linear homo-

geneous partial differential equation is described. It is then shown how the

Legendre-C!ebsch necessary condition ^__l-_z - ,__ • ____^ ^4a_i,_, zn ,,,_ _r_urm_u system of

variables may be employed tO obtain information on the singular extremals

of the problem and the possible appearance of singular subarcs in the solution.

Two examples are employed for illustration, one a simple servo-

mechanism problem and the other Goddard's problem of optimal thrust

programming for a sounding rocket.

* Vice-president
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INTRODUCTION

Optimal control problem s in which the control variable appears linearly

yield to conventional treatment if the optimal control has a bang-bang character.

Difficulties arise with the possibility of intervals during which the optimal con-

trol may be intermediate between the specified limits, such segments of the

solution being _ subarcs, in classical variational terminology. The

Green's Theorem technique of Mie!e (Red. 1) is a powerful tool for solution of

such problems, applicable, however, only if the state space is of very limited

dimension. There is presently available no general theory for determining

singular arcs, deciding as to whether or not they are minimizing even locally,

i. e., over a short time interval, or for determining their role as subarcs of

a composite solution. In the special case of systems linear in the state variables,

investigated by LaSalle (Ref. 2), the appearance of singular subarcs corresponds

to degeneracy in the sense of nonuniqueness of solution.

In the present paper we investigate the possibility of a canonical form

for such problems which resembles that chosen by Wonham and Johnson (Ref. 3)

for study of problems featuring linear constant coefficient systems and cost

functional an integral quadratic form in the state variables. Initially our con-

cern will be with synthesis of the desired form by means of an appropriate

transformation. Following this, attention will be turned to the application of

optimality criteria in the transformed system of variables.

TRANSFORMATION TO CANONICAL FORM

Our analysis begins with the usual Mayer problem statement. A minimum

is sought of a function P of the terminal values of variables x 1, - -, xn and

the terminal value of the independent variable, time t. The variables Xl, - -, x n

are stat____qvariables satisfying a system of first order differential equations of

the form
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x'1 = Pi(Xl ' --' Xn' t) + qi(xl, --, xn, t)y

i = 1, - -, n

(1)

In the class of problems of present interest, the differential equations

are linear in a single control variable y, as indicated. Initial conditions

numbering at most n+l and terminal conditions numbering at most n

may be imposed upon the variables x 1, - -, x n and t. The variable y

is subject to an inequality constraint of the form

YI<Y<Y 2 (2)

We wish to consider the possibility of introducing new variables

z.j: f.j(xl,--, Xn, t) j:1, --, m

satisfying equations of state whose right members are not dependent

upon the variable y explicitly:

(3)

n bf. bf.

= _ __I_ _-3_ j=l, -- m
zj bxi Pi + bt ' '

i=1

(4)

Evidently m < n unless all the qi are ioenticallyzero.

of the collected coefficientof the variable y

n bf.

qi :0
1

i=1

The vanishing

j = 1, - -, m (5)

has been assumed in (4).

For the purpose of determining functions fj having the desired

property, we seek the solutions of the linear homogeneous first order
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partial differential equation (5). From the theory of characteristics (Ref. 4)

we are led to consideration of the ordinary differential equations

dx.
1

ds - qi(xl, --, xn, t) i= 1, -- --, n (6)

in which s is a parameter and t is fixed. If one of the quantities x.1

is adopted instead of s as independent variable, the general solution may

be represented in terms of n-1 parameters:

Ck = q_(x 1, --, x, t) k= 1, --, n-1 (7)

The Ck are constants of integration and the #ok are mutually independent

integrals of the system. Each integral #ok is a solution of the partial

differential equation (5).

The first n-1 of the new variables z. are then to be defined
J

according to f. = The n th variable z we define as
j #Oj" n

zn xL (8)

choosing L such that q_ _ 0 over the domain of interest, a choice

which we assume for the time being open to us. The mutual independence

of the functions _j together with q_ i 0 insures that the transformation

between the variables z and x is nonsingular by the nonvanishing of

the Jacobian determinant

b (Zl, - -, Zn)
A = ¢ o

b(Xl, - -, xn)
(9)
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THE LEGENDRE-C LEBSCH CONDITION IN THE TRANSFORMED VARIABLES

To provide intuitivemotivation for our next step, we digress momen-

tarily, considering the possibilitiesoffered by our transformation in (rarely

occurring) problems devoid of inequality constraints on the control variable.

In such cases we are led to an equivalent problem in a state space of smaller

dimension, the zj, j = 1, - -, n-l, becoming the state variables and zn = x_

the control variable. This comes about through the identicalvanishing of

the Lagrange multiplier associated with the nth equation of state

[n:P +%Y (10)

In this equation as well as in the first n-1 equations of state (4), the

variables x. are presumed eliminated in favor of the z. by use of the
1 j

inverse transformation. It should be noted that jump discontinuities in

the new control variable Zn(t) = x_(t) occurring at corner points of

the solution imply impulsive behavior of y(t). Such behavior would be

admissible in the absence of an inequality constraint on y, which we

have momentarily assumed, and the Weierstrass necessary condition

would then be directly applicable.

Unless the transformed equations were linear in the new control

variable zn = x_, the Weierstrass necessary condition could then be

employed in conjunction with the Euler equations for the transformed

problem to yield information not obtainable via the corresponding condition

in the original problem. The extremals of the transformed problem are

the singular extremals of the original, and those satisfying the strengthened

version of the Weierstrass condition are minimizing, at least over short

intervals. In the special casein which the transformed equations of state

(4) are linear in the new control variable xb, an additional transformation

to a state space of still smaller dimension is indicated.
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Redirecting attention to the problem of main interest, in which

the inequality constraint (2) is operative, we perceive that the course of

action just described is not open to us. We may, however, examine sub-

arcs over which the control variable y takes on values intermediate

between the specified bounds

Yl < y< Y2

with similar considerations in mind. If y = y(t) is the optimal control,

we must, evidently, restrict attention to small variations 6y(t ) = _r/(t),

where _ (t) is an arbitrary piecewise continuous function and the mag-

nitude of the variation, ¢, is vanishingly small so that y = y + 6y

satisfies (11). In the literature of classical variational theory, such

variations are often referred to as weak variations, and the Legendre-

Clebsch condition, necessary for a weak relative minimum, plays a role

loosely analogous to that of the Weierstrass condition whenever a restric-

tion to vanishingly small variations is either assumed or imposed.

We rewrite eqs. (4) with the notation

on the right as

a. for the functions appearing
J

z.j = aj(xl, --, Xn, t) j= 1, --, n-1

and with the variables x i eliminated in favor of z., asJ

zj. = bj(Zl, --, Zn, t) j= i, - -, n-i

Introducing the usual Lagrange multipliers ki,

form the Hamiltonian

n-1

H = _ kjbj

j=l

j = i, - -, n-l, we

(ii)

(12)

(13)

(14)



and write the Euler-Lagrange equations corresponding to the z.
J

• 5H

_j = --_. j= 1, --, n-1
J
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(15)

and that corresponding to z
n

_H

_z
n

= 0 (16)

The Legendre-Clebsch necessary condition is

52H

2
5z

n

6Zn 2 > 0 (17)

for 6z _ O, or
n

52H

2
5z

n

> 0 (18)

Solutions of the system (13), (15) and (16) are the extremals of

the transformed problem and the condition (18) provides an additional

criterion for screening these candidates. If the left member of (18) is

positive, the singular subarc is locally minimizing, i.e., over short

time intervals; if negative, maximizing. The vanishing of the left mem-

ber of (18) corresponds to the special case, mentioned earlier, in which

z enters the function H linearly. Thus along singular arcs of then

original problem, (18) partially fills the gap created by the Weierstrass

necessary condition' s being trivially satisfied.

If it is not possible to choose the variable z n according to the

scheme z =n xL' qL _ O, or if it is inconvenient to invert the trans-

formation Z(X) analytically, one may deal with the equations of state
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in the form (12), adjoining the n-1 equations (3) as constraints by means

of additional Lagrange multipliers. The more complex form of the

Legendre-Clebsch necessary condition as given in Ref. 5, for example,

must then be applied.

EXAMPLES

I. A Servomechanism Problem

In Refs. 1 and 6, the following problem has been studied in some

detail. Given the system

Xl=X2 +Y (19)

x2 = - y

2
x 1

(20)

(21)

(22)

the control taking the system from a specified initial state to x I = x 2 = 0

and extremizing the final value of x3 is sought. The structure of the

solution of this problem is rather complex, belying its innocuous appear-

ance. An application of the transformation scheme just described and an

examination of the Legendre-Clebsch condition leads to the conclusions:

(a)

(b)

the singular subarcs of Refs. 1 and 6 are locally
minimizing for the case of a minimum of the final

value of x3,

the singular subarcs are not minimizing if the
function whose minimum is sought is the negative

of the final value of x3, and the optimal control
is bang-bang.
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In Ref. 1 a result stronger than (a) is obtained, and for problems

which fit the linear/quadratic format of Ref. 1 this will generally be the

case. Owing to an assumed restriction in the problem statement of Ref. 1,

the results do not apply to case (b).

2. Goddard' s Problem

The problem of determining the optimal thrust program for the

vertical flight of a sounding rocket is one which has been extensively

studied in the astronautical literature. The state variables are altitude,

h, velocity, V, and mass, m, satisfying

i] = V

V __

T - D(h, V)
- g(h)

m

T
C

in which rocket thrust T is bounded above and below according to

0<T<T

The function D ,is aerodynamic drag, g is the acceleration of gravity,

and c is rocket exhaust velocity. The problem usually of interest is

the minimization of propellant expenditure mo-m f with fixed initial mass

for attainment of fixed final altitude, final velocity and time unspecified.

The transformation scheme leads to z I = h, z2 = m eV/c as new

state variables and z3 = V as new control variable. The problem is

nonsingular in the state space of reduced dimension. The version of the

problem featuring drag proportional to the square of the velocity has been

investigated fairly thoroughly and in this case a single intermediate thrust
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subarc enters the solution, which the Legendre-Clebsch condition con-

firms as locally minimizing. The advantage of employing the variables

z I and z2 above was first recognized by Ross (Ref. 7}, who established

minimality of the variable thrust subarc for the square law drag case.

In the case of a more general drag law, e.g., one which exhibits sharp

variation in the vicinity of sonic velocity, the Legendre-Clebsch condition

may rule out intermediate thrust operation over a certain velocity range.

CONC LUDING REMARKS

The transformation scheme and application of the Legendre-Clebsch

condition appear to be useful for examination of singular subarcs in Mayer

problems linear in a single control variable, although, of course, the

information obtained is only a fragment of that needed for complete analysis

of such problems. Perhaps the most interesting and suggestive feature of

the approach is the idea of treating problems of this kind in a state space

of reduced dimension.•

.... .v
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